

Cleveland Harbor Cuyahoga County, Ohio

Confined Disposal Facility Project

Final Letter Report

(Second Supplement)

This document has been approved for public telease and sale; its distribution is unlimited.

94-12453

DING QUALLET UNDITEDIED 3

March 1994

94 4 22 149

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUM INTATION P	AGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Substite)		5. TYPE OF REPORT & PERIOD COVERED
Cleveland Harbor, Cuyahoga County, Ohio Confined I Facility Project: Final Letter Report.	Disposal	Final
\		6 PERFORMING ORG. REPORT NUMBER
7. AUTHOR(e)		8. CONTRACT OR GRANT NUMBER(s)
	·	
PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS
U.S. Army Engineer District, Buffalo 1776 Niagara Street Buffalo, N.Y. 14207-3199		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
OUNTROLEMO DY THE HAZ AND ADDRESS	:	1994
		13. NUMBER OF PAGES 89
14 MONITORING AGENCY NAME & ADDRESS/II different f	rom Controlling Office)	15 SECURITY CLASS. (of this report)
		Unclassified
		150 DECLASSIFICATION DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the obstract entered in	Black 20. Il dillerent tras	n Report)
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and a Cleveland Harbor Confined Disposal Facility Dredged Material Disposal	Jeniily by block number)	
20 ABSTRACT (Continuo en reverse side il necessary end il This technical report updates earlier reports that recom Federal Confined Disposal Facility (CDF) at Site 14 and Lakefront Airport. During planning and design of the concerns were raised regarding the adjacent embayment in February 1991 to terminate the work at the Burke Et and evaluated, resubmits a modified Site 10 disposal are environmental evaluation of the site.	mended the dikes be d the construction of a new site, water quality, t caused by the constru- ast Site. This report d	new CDF at Site 10, north of Burke water circulation, and other action of the CDF. A decision was made

Supplement Number Two to:

CLEVELAND HARBOR, OHIO CONFINED DISPOSAL PROJECT LETTER REPORT

Dated January 1987

Accesi	on For)
	CRA&I	7
DTIC	TAB ounced	<u> </u>
Justifi		
By Distrib	ution /	
A	valiability (10.03s
Dist	Avail 356 Specia	
A-1		

U.S. Army Corps of Engineers
Buffalo District
1776 Niagara Street
Buffalo, New York 14207

1994

Supplement Number Two to Cleveland Confined Disposal Report Letter Report Dated January 1987

TABLE OF CONTENTS

<u>Paragraph</u>	<u>Subject</u>	<u>Page</u>
1	General	1
. 2	Project Authority and Local Cooperation	2
3	Alternate Disposal Plans	4
4	Proposed Disposal Plan	6
5	Construction Cost Estimate	9
6	Summary of Economic Evaluation	10
7	Environmental Impacts	11
8	Project Design and Construction Schedule	12
9	Coordination	22
10	Conclusions	22
11	Recommendation	22
	APPENDICES	
<u>Letter</u>	Subject	
A	Correspondence	
R	Economic Evaluation	

ENVIRONMENTAL IMPACT STATEMENT (Second volume of report which includes its own appendices)

U.S. Fish and Wildlife Service -

Coordination Act Report

Second Supplement to Cleveland, Ohio Confined Disposal Project Letter Report

GENERAL

Cleveland Harbor, Ohio is located at the mouth of the Cuyahoga River on the south shore of Lake Erie. By water, the port is approximately 176 statute miles west of Buffalo Harbor, New York and 96 miles east of Toledo Harbor, Ohio. Cleveland is an important Great Lakes port city. The population in the Cleveland and Cuyahoga County vicinity is about 1,445,000. Because of its location and transportation facilities, Cleveland has become an important local, State, Regional, National, and World center of industry and commerce. Commodities which move through the Harbor include: limestone, iron ore, cement, sand, gravel, salt, oil, grain, and general cargo. Land use in the Cleveland Harbor area is generally a mix of industrial, commercial, transportation, recreational, and some residential. The general vicinity of Cleveland Harbor provides habitat for a variety of forage and game fish and some wildlife.

Federal navigation channels in Cleveland include those in the Outer Harbor, the Old River Channel, and the Cuyahoga River Channel. Most sediments dredged from these channels are classified as polluted and not suitable for open-lake discharge. Confined disposal facilities (CDF) have been developed and utilized within the harbor area for disposal of dredged material over the last few decades. The CDF currently being utilized (CDF 14) is approaching fill capacity. Continued dredged material discharge procedures need to be identified and considered.

The U.S. Army Corps of Engineers, in conjunction with Federal, State, and local interests, has investigated problems and needs pertaining to maintenance of Federal navigation facilities and annual dredging and discharge of approximately 300,000 cubic yards of polluted sediments, not suitable for open lake discharge, dredged from Federal navigation channels at Cleveland Harbor. The study was conducted in accordance with present Federal legislation, guidelines and regulations. In addition to the No Action (Without Project Conditions) alternative, an array of alternate measures and/or plans were evaluated for engineering and economic feasibility, social and environmental acceptability; and their contributions towards accomplishing project planning objectives.

This Report

This report describes the events that have occurred since the Cleveland Harbor, Ohio Confined Disposal Project Letter Report (November 1986, revised 26 January 1987) was approved by North Central Division on 25 February 1987. The earlier report recommended that the dikes be raised by seven feet at the existing Federal Confined Disposal Facility (CDF) at Site 14 and

the construction of a new CDF at S.te 10, north of Burke Lakefront Airport. After a local cooperator could not be found for the utility relocations at Site 10, Buffalo District met with local interests to locate a new site. A new site was located and the First Supplement to the Letter Report (September 1989) was prepared. It was subsequently approved by NCD on 27 August 1990. The September 1989 report recommended that the dikes be raised at Site 14 and the construction of a new CDF at the Burke Airport East 15-year site. Reference Figure 1.

During continued planning and coordination and design of the CDF at the Burke Airport East site water quality, water circulation, and other concerns were raised regarding the adjacent embayment caused by the construction of the CDF. Resolution of the water quality concerns would have required extensive testing and physical modeling. This testing and modeling would have required substantial funding and time with no certainty that the final results would resolve the issues raised on the impacts the CDF would have on water quality in the embayment. The water quality testing and modeling would have caused the schedule for construction of a new CDF to slip and construction would not be completed prior to the filling of the currently utilized Dike 14 even if the testing indicated no adverse impacts. This slippage in schedule would have impacted dredging and harbor operations and a decision was made in February 1991 to terminate the work on the Burke East site.

After the study of the Burke East site was terminated, Buffalo District met with local interests to locate a new disposal site. This report describes the sites that were considered and evaluated, resubmits a modified Site 10 disposal area adjacent to Burke Airport for approval, and presents an economic and environmental evaluation of the site. Raising the dikes at Site 14 remains an integral portion of the overall solution to contain the dredged sediments in the near future.

2. PROJECT AUTHORITY AND LOCAL COOPERATION

a. Project Authority

The existing Federal navigation project at Cleveland, Ohio was authorized by the Rivers and Harbors Acts of 1875, 1886, 1888, 1899, 1902, 1907 and 1910. The 1937 Rivers and Harbors Act made the maintenance of the channels in the Cuyahoga and Old Rivers to a depth of 21 feet a Federal responsibility. All subsequent legislation has made maintenance of all channels in Cleveland Harbor a Federal responsibility. Since the new confined disposal facility is to be constructed under operations and maintenance authority the original project authority applies, which are the River and Harbors Acts of 1946, 1958, 1960 and 1962.

b. Local Cooperation

The construction of the new CDF is required for the continued maintenance of the existing project and therefore will be accordance with the original project authorizing documents. The construction of the CDF is not included under the cost sharing requirements of P.L. 99-662 since the Act does not apply to previously existing projects. The city of Cleveland, as the local sponsor, would be required to provide the following assurances:

- a. Furnish without cost to the United States all lands, easements, and rights-of-way necessary for construction, operation, and subsequent maintenance, when and as required;
- b. Accomplish without cost to the United States all alterations and relocations of transportation systems, storm drains, sewer outfalls, utilities, and other relocations and alterations made necessary by the project;
- c. Hold and save the United States free from damages due to construction, operation, and maintenance of the facility; and
- d. Maintain the facility after completion of its use for disposal purposes in a manner satisfactory to the Secretary of the Army.

3. ALTERNATE DISPOSAL PLANS

The 1986 Letter Report, which recommended raising the walls of the existing Dike 14 and constructing a new CDF at Site 10, considered 16 alternative plans in connection with seven sites. The 1989 supplemental report considered five alternative plans in connection with three sites. Reference Figure 1.

During a February 1991 meeting between the City of Cleveland and the Corps of Engineers Buffalo District, the City proposed a modification to Site 10 which was proposed in the January 1987 Letter Report. The Site 10 CDF proposed in 1987 had an area of approximately 86 acres with a usable capacity of 4,732,000 cubic yards. The construction of the Site 10 CDF would have required the extension of nine sewer outfalls. The current site modification proposed is referred to as Site 10B. This is a smaller site, has fewer utilities to relocate, and is shown in Figure 2.

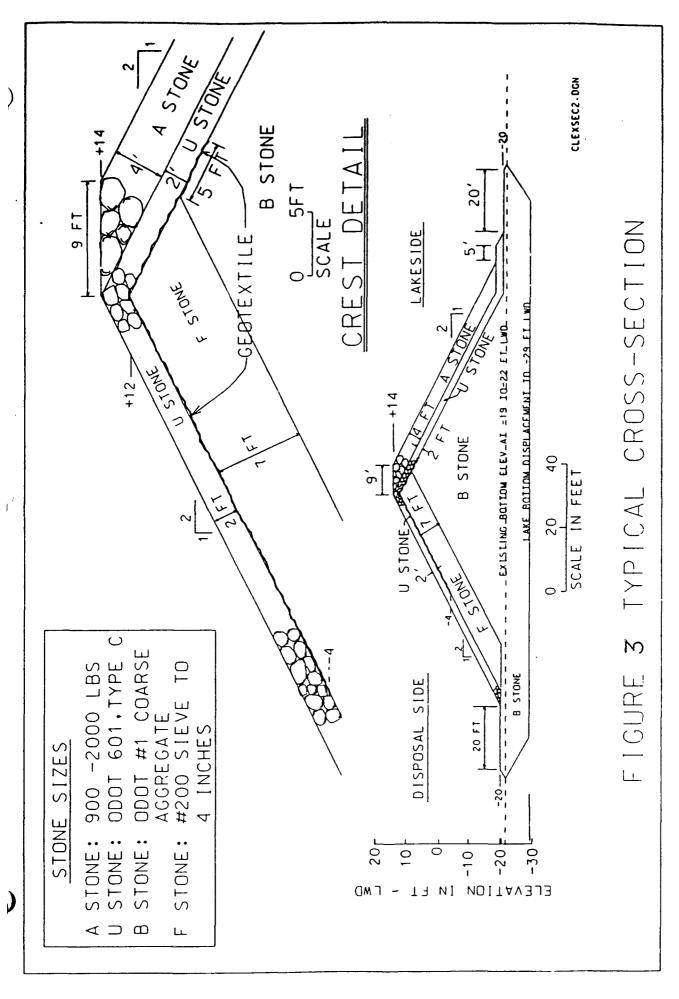
Site 10B has an area of approximately 68 acres with a usable volume of 3,840,000 cubic yards. It provides approximately 15 years of capacity for consolidated dredged material at a rate of 300,000 cubic yards per year with a consolidation rate of 0.78. The CDF entails construction of a 5050 foot long rubblemound dike with a top elevation of approximately +14 feet LWD placed in water with

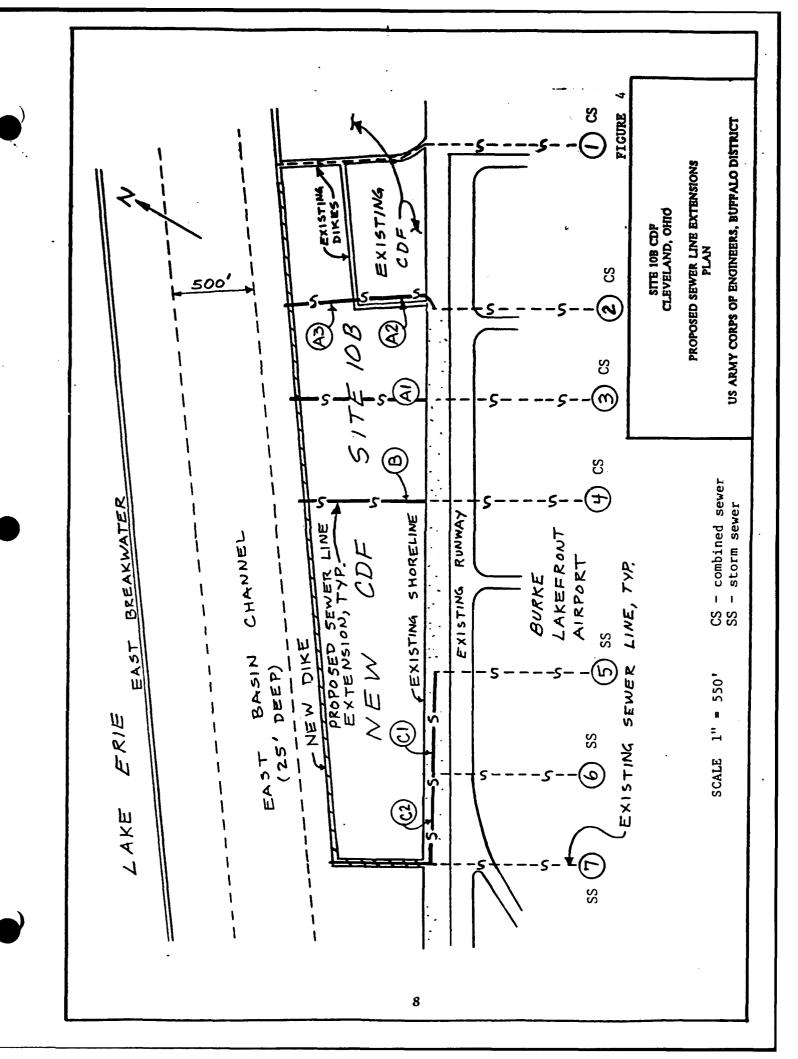
5

a depth averaging -20 feet LWD. The construction of the CDF would require the extension of six sewer outfalls through the new CDF Reference Figure 4. The estimated construction cost is \$32,880,000 including \$3,980,000 for the extension of the storm sewer outfalls. The storage cost per cubic yard of consolidated dredge material is \$6.68. Figure 3 presents the cross section of the proposed stone dike. The net annual benefits would be \$3,484,700 with a benefit-to-cost ratio of 1.78.

A summary of the alternatives presented in the 1989 supplemental report plus Site 10B is presented in Table 1. A detailed description of the alternatives is presented in the 1989 supplemental report.

Table 1
Summary of Supplemental Plans and Sites
for a Confined Disposal Facility for Cleveland Harbor


<u>Site</u>	Area (Acres)	Volume <u>(Yds³)</u>	Years(1)	Costs (Aug 1991)	\$/yd ³ of Consolidated Material
Site 10B	68	3,840,000	15	\$32,880,000	6.68
Modified Site 10	36	2,071,000	8.9	18,200,00	7.19
Burke East ⁽²⁾ (10-year)	40	2,340,000	10	21,700,000	7.23
Burke East ⁽²⁾ (13-year)	53	3,100,000	13	28,500,000	7.17
Burke East ⁽²⁾ (15-year)	60	3,510,000	15	29,300,000	6.51
Burke East ⁽²⁾ (20-year)	81	4,751,000	20	33,100,000	5.43
ODNR E. 55th Stree	et 41	2,381,000	10	27,000,000	8.85


⁽¹⁾ Disposal rate of 300,000 cubic years and a 22 percent consolidation factor used based upon current conditions at Cleveland Dike 14.

4. PROPOSED DISPOSAL PLAN

As shown in Table 1 the cost per cubic yard of dredged material is the least for the Burke East (20-year) site followed by the Burke East (15-year) site. The 20-year site was found to be unacceptable by the Ohio Department of Natural Resources during the preparation of the 1989 supplemental report and would also be subject to the same water quality, water circulation, and

⁽²⁾ All of the Burke East sites would be subject to the water quality and circulation concerns raised during the detailed design of the Burke East 15-Year site and would therefore be unacceptable.

other concerns as the Burke East (15-year) site. The Burke East (15-year) site was the site proposed in the 1989 supplemental report but is no longer considered a feasible solution due to the water quality, water circulation, and other concerns noted previously.

The selected plan is Site 10B since it provides the lowest cost per cubic yard (\$6.68) solution to the disposal of dredged material that is supported by the City of Cleveland. The City has agreed to act as the local cooperator for the Site 10B CDF by letter dated August 9, 1991. The project is considered to be reasonably environmentally acceptable.

5. CONSTRUCTION COST ESTIMATE

The estimated first cost of construction of the CDF at Site 10B is \$32,880,000 including \$3,980,000 for the extension of six storm sewer outfalls. A detailed breakdown of the construction cost is shown in Table 2.

Table 2
Total First Cost
(August 1991 Price Levels)
Cleveland Site 10B CDF

Dike Construction

<u>Item</u>	Estimated Quantity	<u>Unit</u>	Unit <u>Price</u>	Estimated Amount
A2 Stone	86,000	Ton	\$35.50	\$ 3,053,000
U2 Stone	54,200	Ton	34.10	1,848,220
B Stone	1,050,000	Ton	12.10	12,705,000
F Stone	113,000	Ton	13.00	1,469,000
Impervious Fill	13,500	CY	13.00	182,250
Geotextile	24,200	SY	2.15	52,030
Mob. & Demob.		LS		440,000
Total Contractor's Contingencies (25% Total Contractor's Engineering & Desi Construction Manag	s) : Earnings Plus .gn	s Contir	ngencies	\$19,749,500 4,950,000 24,700,000 1,730,000 2,470,000

28,900,000

Table 2 (Cont'd) Total First Cost (August 1991 Price Levels) Cleveland Site 10B CDF

Storm Sewer Extensions

Description	Estimated Quantity	<u>Unit</u>	Unit <u>Price</u>	Estimated Amount
36" Dia. CMP	-	LS	-	218,000
65" x 40" CMP	-	LS	-	262,000
72" Dia. CMP	-	LS	-	463,000
10'3" x 6'9" PIPE	ARCH -	LS	-	610,000
11'5" x 7'3" PIPE	ARCH -	LS	· -	578,000
12'6" x 7'11" PIPE	ARCH -	LS	~	534,000
Mob. & Demob.	-	LS	-	60,000
Total Contractor's Contingencies (25% Total Contractor's Engineering & Desi Construction Manag) Earnings Plu gn	s Conting	gencies	\$ 2,725,000 675,000 3,400,000 238,000 342,000
Total First Cost o	f Constructio	n		3,980,000

Total Project Cost

\$32,880,000

The cost of the construction of the CDF is to be funded with 100% Federal funds and the cost of the sewer extensions is to be funded with 100% non-Federal funds. The local sponsor has indicated an interest in the Buffalo District providing engineering services on a cost reimbursable basis for the engineering and design associated with the extension of the storm sewer outfalls.

6. SUMMARY OF ECONOMIC EVALUATION

The commercial shippers utilizing Cleveland Harbor require adequate shipping channel depths to maintain economically viable operations. Without a disposal facility for the polluted dredged sediments, shoaling of the Federal channels would occur which would decrease the draft that vessels could utilize to enter the harbor area and access the docks. This decrease in draft would result in a decreased tonnage of bulk commodities being transported by each vessel trip. A greater number of vessel trips would be necessary to deliver the same quantity of bulk commodities to the recipient of the commodity. This would increase the costs of the waterborne transportation and ultimately could result in a traffic shift to other Great Lakes harbors, or a resultant shift to other modes of transportation such as rail.

The construction of the Site 10B CDF was evaluated for economic efficiency by comparing the cost of constructing the CDF plus the annual maintenance cost to the increase in transportation costs if maintenance dredging was discontinued. The project economics were evaluated over a 50 year evaluation period beginning in 1997.

The "without project" condition assumed that no maintenance dredging would occur after 1997 due to the lack of a disposal facility. The transportation costs were calculated for the affected shippers based upon the annual shoaling which would affect the Federal channel.

The average annual transportation costs under the "with project" condition were calculated assuming dredging from project years 1 to 15 to coincide with the capacity of the Site 10B CDF. Under the "with project" condition it is assumed that dredging will be discontinued from project year 16 to project year 50. This assumption is utilized only for the economic evaluation and is not based upon future dredging expectations.

The average annual project benefits to the project have been developed as the difference between the transportation costs for the "without project" condition and the "with project" condition. The average annual benefits for the project based on transportation costs avoided are \$7,896,500.

The average annual costs of the project were developed based upon the construction cost of the CDF at Site 10B, maintenance costs for the CDF and annual maintenance dredging costs. The construction cost of the CDF included costs for planning, engineering and design, construction management, and interest during construction. The annual maintenance dredging costs are included as a project cost since the benefits attributable to the construction of the new CDF will not be realized unless the Federal channels are dredged. The average annual costs for the project were calculated to be \$4,411,800.

The net benefits for the project are defined as the difference between the average annual benefits and the average annual costs and total \$3,484,700. The benefit to cost ratio for the project has been calculated as 1.78.

ENVIRONMENTAL IMPACTS

A Notice of Intent to prepare a Draft Environmental Impact Statement (DEIS) was prepared by the Buffalo District and published in the Federal Register on August 29, 1985. An EIS was prepared for this project for the following reasons: (1) an EIS is normally prepared for a project of this scope; (2) public and agency concerns; and (3) potential impacts relative to Cleveland Harbor and the surrounding community and environment. The EIS discusses, in considerable detail, project: problems and needs, alternative considerations and recommendations, the environmental setting, environmental effects, and public involvement.

The notice of availability for the Draft EIS for Cleveland Harbor, Ohio was published in the Federal Register on January 29, 1993. Comments received regarding this Draft EIS and responses have been added to the Preliminary Final EIS presented in the second volume of this report. Notice will be made and the FEIS will be coordinated for a 30-day review period. If the proposed project is approved, a Record of Decision will be signed and coordinated. Subsequent preparation of final plans and specifications, and construction would follow.

Table 3 consists of a summary page with comparative impacts of the No Action Plan and the Site 10B and Burke East Sites (both 15-year CDFs) and follows up with impact discussions which briefly describe the anticipated environmental impacts (by parameter) of the most feasible CDF plans for Cleveland Harbor, Ohio. Impacts for the Burke East Site (10-year, 13-year, and 20-year) CDF plans would be proportionately similar to those for the Burke East Site (15-year) CDF plan. Impacts for the Site 10A (9-year) CDF plan would be proportionately similar to those for the Site 10B (15-year) CDF plan.

Summary Table 4, which follows, indicates the relationship of plans considered in detail to Federal and State Environmental Protection Statutes, Executive Orders, and Memoranda.

The U.S. Fish and Wildlife Service has completed their Coordination Act Report pertaining to the proposed CDF site. A copy of the report and the Corps' responses are included in Letter Report Appendix C.

8. PROJECT DESIGN AND CONSTRUCTION SCHEDULE

The schedule outlined below shows the key milestones that must be met (pending planning and environmental approval) to accomplish the construction of the new CDF within the time frame necessary to ensure completion prior to the filling of the raised Dike 14.

Design Analysis to NCD	October 1994
NCD Approval of Design Analysis	November 1994
Completion of Plans and Specifications	March 1995
Execute LCA	April 1995
Advertise Construction Contract	May 1995
Award Construction Contract	June 1995
Begin Construction	July 1995
Construction Complete	June 1998

Summery Table 3 Comperative Impacts of No Action and Detailed Plans

Evaluation Parameters	(With	No Action out Project Conditions)		SITE TUB 15-Year CDF	- D	FRE East Site 15-Year CDF
Economics B/C						
Federal Share Non-Federal Share Total				28,500,000 3,980,000 32,880,000		29,300,000 29,300,000
Benefits (Av. An) Costs (Av. An) B/C Het Benefits (Av. /	An)	M/A		7,896,500 4,411,800 1,78 3,484,700		NFC
Natural Environment Resources	İ					
Air Quality	ST:	Not Significant	ST:	Moderate Adverse	ST:	Moderate Adverse
	LT:	Not Significant	LT:	Minor Adverse	LT:	Minor Adverse
Water Quality	ST:	Not Significant	ST:	Moderate Adverse	ST:	Moderate Adverse
	LT:	Not Significant	LT:	Minor Adverse	LT:	Minor Adverse
Sediment Quality	ST:	Not Significant	ST:	Moderate Adverse	ST:	Moderate Adverse
	LT:	Not Significant	LT:	Moderate Beneficial	LT:	Moderate Beneficiat
Benthos/Plankton	ST: LT:	Not Significant Ninor Adverse	ST: LT:	Moderate Adverse Major Adverse Minor Beneficial	ST: LT:	Moderate Adverse Najor Adverse Ninor Beneficial
Fisheries	ST: LT:	Not Significant Moderate Beneficial	ST: LT:	Moderate Adverse Major Adverse Minor Beneficial	ST: LT:	Moderate Adverse Major Adverse Minor Beneficial
Vegetation	ST:	Not Significant	\$1:	Minor Adverse	ST:	Minor Adverse
	LT:	Not Significant	LT:	Moderate Beneficial	LT:	Moderate Beneficial
Wetlands	ST:	Not Significant	ST:	Not Significant	ST:	Not Significant
	LT:	Not Significant	LT:	Not Significant	LT:	Not Significant
Wildlife	ST: LT:	Not Significant Not Significant	ST: LT:	Moderate Adverse Moderate Adverse Moderate Beneficial	ST: LT:	Moderate Adverse Moderate Adverse Moderate Beneficial
Threatened & Endangered Species	ST:	Not Significant Not Significant	ST: ST:	Not Significant Not Significant	ST:	Not Significant Not Significant
Human Environment Man Made Resources						
Community and	ST:	Hoderate Adverse	ST:	Moderate Beneficial	ST:	Minor Beneficial
Regional Growth	LT:	Hajor Adverse	LT:	Major Beneficial	LT:	Moderate Beneficial
Displacement of	ST:	Miror Adverse	ST:	Not Significant	ST:	Kot Significant
People	LT:	Hoderut e Adv erse	LT:	Kot Significant	LT:	Eot Significant
Displacement of Farms	ST:	Not Significant	ST:	Rot Significant	ST:	Not Significent
	LT:	Not Significant	LT:	Rot Significant	LT:	Not Significent
Business/Industry	ST:	Hoderate Adverse	ST:	Moderate Beneficial	ST:	Moderate Beneficial
Employment/Incom	e LT:	Hajor Adverse	LT:	Major Beneficial	LT:	Hajor Beneficial
Public Facilities and Services	ST: LT:		\$1: L1:	Hoderate Adverse Hoderate Beneficial	ST: LT:	
Recreational	ST:	Hinor Adverse	ST:		ST:	Minor Adverse
Resources	LT:	Hinor Adverse	LT:		LT:	Minor Beneficial
Property Values and Tax Revenues	ST: LT:	Hinor Adverse Hoderate Adverse	ST: LT:		ST: LT:	
Noise and	ST:	Not Significant	ST:	Minor Adverse	ST:	
Aesthetics	LT:	Minor Adverse	LT:	Not Significant	LT:	
Community	ST:	Moderate Adverse	ST:	Kinor Adverse	ST:	Moderate Adverse
Cohesion	LT:	Major Adverse	LT:	Hoderate Beneficial	LT:	Kinor Beneficial
Cultural	ST:	Not Significant	ST:	Not Significant	ST:	
Resources	LT:	Minor Adverse	LT:	Rot Significant	LT:	
Key:		Range:			No	te

ST: Short Term
LT: Long Term
N/A: Not Applicable
(AA): Average Annual
NFC: Not Final
Calculated

Major Beneficial Roderate Beneficial Minor Beneficial Not Significant Minor Adverse Moderate Adverse Major Adverse

*Narrative provided in "SECTION 4 - ENVIRORMENTAL EFFECTS" of the ENVIRONMENTAL IMPACT STATEMENT.

Evaluation Parameter	: No Action : (Without Project Conditions)	: Site 108 (15-Year) ; Confined Disposal Facility	: . Durke East Site (15-Year)
ECONOMICS 8/C	•• ••		
Federal Costs Non-Federal Costs Total Cost	Y/X	28,900,000 3,980,000 32,880,000	29,300,000
Benefits (AA) Costs (AA) B/C (AA) Net Benefits (AA)		7,896,500 4,411,800 1,78 3,484,700	2
NATURAL ENVIRONMENT	•• •• ••	oo 40 oo .	
Air Quality	ST: Not Significant LT: Not Significant	SI: Moderate Adverse LI: Minor Adverse Some localized temporary air quality : degradation due to fuel combustion, partic-: ulate emissions and fuel coor from equip-: ment operation during dredging and CDF : construction . Some temporary localized odor may : occur from dredged material during annual : dredging and deposition into the CDF.	ST: Moderate Adverse LT: Minor Adverse LT: Minor Adverse air quality as for Site 108 (15-year) CDF.
Water Guslity	ST: Not Significant LT: Not Significant	ST: Moderate Adverse IT: Minor Construction of sediment during; quality as described for the Site 108 IT: Minor Construction of the stone IT: Minor Construction of the stone dike. IT: Minor Contributed toward plugging up voids: IT: Minor Contributed toward plugging up voids: IT: Minor Contributed toward plugging up voids: IT: Minor Contributed toward plugging and construction: IT: Minor Contributed toward of the operation: IT: Minor Contributed toward plugging and construction: IT: Minor Contributed toward plugging and contributed and contributed and contributed and contributed and contributed and contri	ST: Noderate Adverse LT: Minor Adverse LT: Minor Adverse Guality as described for the Site 108 (15-Year) CDF alternative plan.
Key to Symbols (AA): Average Armual ST: Short Term LT: Long Term NFC: Not Final : Calculated		material disposal. Installation of the CDF atome dike: Nould contribute toward some localized: alteration of current patterns in the: general vicinity of the project site. Some possible localized impact on water: quality if zebra mussels colonize submerged: dike stone (i.e., increased water clarity).	

Table β - Comparative impacts of Detailed Plans (Contid)

Evaluation Parameter	: No Action : : (Without Project Conditions) :	Site 108 (15-Year) Confined Disposal Facility	: Burke East Site (15-Year) : Confined Disposal Facility
Sediment Quality	ST: Not Significant LT: Not Significant .	ST: Moderate Adverse LT: Moderate Beneficial . Temporary short-term localized disruption and resuspension of bottom silts, sediments and detritus into the water column by construction activity at the time the dike is being built, as well as during annual dredging and discharge of dredged material into the completed CDF. . Temporary improvement in substrate quality in navigation channels by dredging and removal of polluted sediments and subsequent deposition of such material into the CDF. . Annually dredged navigation channels would tend to trap polluted sediments from upstream areas, thereby reducing potential for transport of such material further : lakeward.	ST: Moderate Adverse LT: Moderate Beneficial Similar sediment impacts as described for the Site 108 (15-Year) alternative plan.
Benthos/Plankton	ST: Not Significant IT: Minor Adverse II: Minor	ST: Moderately Adverse LT: (1) Major Adverse (2) Minor Beneficial (2) Long-term displacement of planktonic organisms from the water column that would in be filled by dike stone. Disruption of benefic and planktonic organisms and associated habitat organisms and associated habitat is substrate/vater column) in the charnels & CDF during armual dredging and discharge of dredged material. Eventual loss of all aquatic habitat in the 68-acre CDF site. Dike stone planktonic organisms within the 68-acre CDF site. Dike stone placed on the lake bottom invanism habitat and crush a number of existing benthic invertebrates. Stone placed below the waterline would invoide about 9 acres of stable, long-term substrate for benthic invertebrate colonication long the lakeward facing slope of the dike. Submerged stone along the inside stone of the dike would also provide substrate on a short-term basis, until the CDF became: filled-in with dredged material above the invaterline.	ST: Moderate Adverse (2) Minor Beneficial (2) Minor Beneficial (3) Similar impacts as described for the CDF Site 108 (15-Year) alternative plan, except that the lake bottom substrate upon which dike stone would be placed would cover about 19.5 acres of benthic organism habitat and associated invertebrates. Submerged stone placed along the lakemend facing slope of the rubblemound dike would provide about 6.5 acres of new aubstrate in habitat surface area for benthic organism recolonization.

Site 108 (15-Year) : Burke East Site (15-Year) Confined Disposal Facility : Confined Disposal Facility	ST: Moderate Adverse LT: (1) Major Adverse LT: (2) Minor Beneficial C2) Minor Beneficial C3) Minor Beneficial C4) Minor Beneficial C5) Minor Beneficial C6) Minor Beneficial C7) Minor Beneficial C7) Minor Beneficial C8) Minor Beneficial C9) Minor Be	ST: Minor Adverse If: Moderate Beneficial Loss of some aquatic submergent plants: Loss of some aquatic submergent plants: Loss of some aquatic submergent plants: Predominantly filamentous algae. Some minor loss or disruption on scattered: Submerged stone of outside dike alopes of growth of herbecous and woody vegetation: Project zone. Project zone. Natural extractial shoreline bank in the: Project zone. Natural extractial shoreline bank in the: Frentual conversion of the depuatic vege: Adaption would likely temporarily occur over: would become established with vegetation as the CDF site, as water becomes shallower; described for CDF Site 108 (15-year). And dredged material accumulations tempor: Submerged stone on outside dike alopes: Submerged stone of the deep water: Submerged stone of the deep water: Site to about 68 acres of terrestrial land; that, if left undeveloped, would become: invaded with native grasses, forbs, shrubs,: Freath difference of the depuation in the depuation in the decome in the depuation in the depuat
No Action : : (Without Project Conditions) ;	ST: Not Significant LT: Moderate Beneficial No annual disruption to fish habitat and associated fish since CDF construction would not occur. Possibly some improvement in quality; the fish habitat in the long-run if sources of a mate fish habitat in the long-run if sources of and pollution were eventually rectified. side cons cons cons cons dike dike dike side side side side side side side sid	ST: Not Significant LT: LT: LT: LT: Property of the standard sand sand sand sand sand sand sand san
Evaluation Parameter	16	Vegetation

Table 3 - Comparative Impacts of Detailed Plans (Cont'd)

Evaluation Parameter	No Action (Without Project Conditions)	: Site 108 (15-Year) : Confined Disposal Facility	Burke East Site (15-Tear)
Wet lands	ST: Not Significant LT: Not Significant	ST: Not Significant : LT: Not Significant : . Construction of Site 10B (15-Year) : would have no significant adverse impact : on small remaining scattered pockets of : wetlands in nearby existing CDF Site 12. : There are no other nearby wetlands in the : general project locale.	is It is to significant. It is not significant. Construction of the Burke East (15-Year). Of would have no significant advance impaction small, scattered pockets of settlands. In nearby existing OF Site 12. There is are no other nearby wetlands in the general project locale.
vildtife	ST: Not Significant LT: Not Significant	ST: Moderate Adverse [I: (1) Moderate Adverse (2) Moderate Beneficial Similar short & long term impacts on severtually be converted from habitat used seventually be converted from habitat used by aquatic birds, to terrestrial habitat for upland wildlife; Dike stone above the waterline would provide about 5,050 linear feet of stable; Ingulls, terms and some other bird species. The calmer pooled area as well as the poorly drained dredged material (exposed above the waterline) in the CDF, would it likely attract aquatic birds such as seasules, waterfoul, and shorebirds, until the site becomes better drained and more site becomes better drained and more vegetated. Eventually, terrestrial vegetasimilar to that provided by the existing may be a potential temporary nuisance or shazard to aircraft utilizing the Burke is lakefront airport.	17: Moderate Adverse 17: (1) Moderate Adverse 17: (2) Moderate Beneficial 17: Moderate Beneficial 18: Famporary short-term disruption to 18 aquatic bird habitat during atome dike 18: Construction, as well as during any future dike 18: Leing actively discharged into the CDF. 19: Eventual long-term loss of open water 19: Leing actively discharged into the CDF. 19: Eventual long-term loss of open water 19: Leing actively discharged into the CDF. 19: Leing actively discharged into the CDF. 19: Leing actively discharged material 19: Leing actively discharged material 19: Leing actively discharged material 19: Leing actively long term 19: Leing loss fing term 19: Leing
Threatened and Endangered: Species	d: ST: Not Significant LT: Not Significant	ST: Not Significant IT: Not Significant IT: Not Significant It is possible that on occasion, transerint individuals of piping plover and indiana bat - both Federally listed endances gered species - may briefly visit the area; since the vicinity of Cleveland Marbor is within the overall habitat range of these it two species. Due to the project type and it location, no significant adverse impacts on: this plover or bat is anticipated by consistruction of the Site 108 (15-Yr.) CDF.	ST: Not significant LT: Not significant . No significant adverse impact on threatened or endengered apacies, se idecribed for the Site 108 (15-Year) alternative plan.

Table 3 - Comparative Impacts of Detailed Plans (Cont'd)

Evaluation Parameter	: No Action : (Without Project Conditions) :	Site 10B (15-Year) : Confined Disposal Facility :	Burke East Site (15-Year) Confined Disposal Facility
HUMAN ENVIRONMENT MAN-MADE RESOURCES			
Growth	SI: Moderate Adverse LI: Major Adverse . If the harbor channels could not be main- : tained for lack of a dredged material discharge : area and allowed to silt in, enterprises and : individuals dependent on t e channels to allow : navigation and shipping would suffer econom- : ically and may eventually be displaced.	LI: Major Beneficial Development of this alternative would: allow for continued harbor channel maintenance dredging and confined discharge of polluted dredged material for about 15 years. About a 68-acre Outer Harbor area adjacent to Burke Lakefront Afrport availtable for development. Probable long-term; land use to expand or relocate airport facilities possibly making room for other: Lakefront developments. Port Authority and: City of Cleveland favor this site and would: commit to local costs, including relocation:	ST: Minor Beneficial LT: Moderate Beneficial . Development of this alternative would allow for continued harbor channel maintenance dredging and confined discharge of polluted dredged material for about 15 years. About a 60-acre Outer Marbor area adjacent to the old CDF Site 12 available for development. Probable long-term land use to expand or relocate airport facilities possibly making room for other Lakefront developments. Port Authority and City of Cleveland do not favor this site. Water quality and land use concerns.
Displacement of People	SI: Minor Adverse LI: Moderate Adverse . If the harbor chamels could not be main- : tained for lack of a dredged material discharge : area and allowed to silt in, enterprises and : individuals dependent on the chamnels to allow : navigation and shipping would suffer economic- : ally and may eventually be displaced.	SI: Not Significant LI: Not Significant . No displacement of people. The Port : Authority has obtained rights of Lake Erie : bottom land from the State.	ST: Not Significant LT: Not Significant . No displacement of people. The Port Authority must obtain rights of Lake Erie bottom land from the State.
Displacement of Farms	: ST: Not Significant : LT: Not Significant : No displacement of farms.	ST: Not Significant LT: Not Significant . No displacement of farms.	ST: Not Significant LT: Not Significant . No displacement of farms.
Business/Industry Employment/Income	SI: Moderate Adverse LI: Major Adverse . If the harbor channels could not be main-: . tained for lack of a dreaged material discharge: area and allowed to silt in, enterprises and : individuals dependent upon the channels to allow: navigation and shipping would suffer economic-: ally and may eventually be displaced.	SI: Moderate Beneficial LI: Major Beneficial . Construction of facility. Development: of this alternative would allow for continued harbor channel maintenance dredging: and CDF discharge of polluted dredged material for about 15 years. Dependent: harbor business, industry, employment, and income would be facilitated.	ST: Moderate Beneficial LT: Major Beneficial Construction of facility. Development of this alternative would allow for continued harbor charmel maintenance dradging and CDF discharge of polluted dradged material for about 15 years. Dependent harbor business, industry, employment, and income would be facilitated.

Table 3 - Comparative Impacts of Detailed Plans (Cont'd)

:

X

Evaluation Parameter	: No Action (Without Project Conditions)	: Site 108 (15-Year) : Confined Disposel Facility	Burke East Site (15-Yeer) Confined Disposal Facility
Public Facilities and Services	SI: Minor Adverse LI: Moderate Adverse LI: Moderate Adverse Li: Hoderate Adverse tained for lack of a dredged material discharge: area, and enterprises were displaced, associated: land use dilapidation and/or redevalopment would: likely occur. Industrial and commercial processes, transportation interfaces, and public: facilities, services and utilities would need: to be altered accordingly.	ST: Moderate Adverse LT: Moderate Beneficial Six atems seure outflows would need to: be extended through the CDF site. Develop: ment of this alternative would provide for: continued harbor channel maintenance dredging and CDF discharge of polluted: dredged material for about 15 years. Dependent enterprises and associated facil: ities and services would likely be main: tained. No significant disruption to public facilities or services would be: expected due to project development.	ST: Minor Adverse LT: Moderate Beneficial Development of this alternative would provide for continued harbor charmel maintenance dredging and CDF discharge of polluted dredging and CDF discharge of poluted dredging and sterial for about 15 years. Dependent enterprises and associated facilities and services would likely be maintained. No significant disruption to public facilities or services would be expected due to project development. Created embeyment sever outflow water quality concerns.
Recreational Resources	SI: Minor Adverse 1. If the harbor channels could not be main- 1. If the harbor channels could not be main- 1. If the harbor a dredged material discharge 1. If the harbor of a dredged material discharge 1. If the harbor of a dredged material discharge 1. Including recreational dependent upon the 1. Including recreational dependent upon the 1. Including recreational despendent suffer economic- 1. Including recreational developments could occur.	ST: Minor Adverse LT: Minor Beneficial Development of this alternative would provide for continued harbor channel maintenance dredging and CDF discharge of polluted dredged material for about 15 years. About a 68-acre Outer Harbor (boating) area adjacent to Burke Lakefront Airport lost. Pedestrian/fisherman access is a long term lakefront development consideration (peripheral) possibly faciliated/accommodated by CDF related future sincort facility relocation or expansion. Should be consistent with CDNR lakefront park plans.	ST: Minor Adverse LT: Minor Beneficial Development of this alternative would provide for continued harbor charnel maintenance dreaging and CDF discharge of polluted dreaged material for about 15 years. About a 60-acre Outer Harbor (bosting) area adjacent to the old Site 12 CDF lost. Additional stone dike (fishery habitat). Pedestriaryfisherman access is a long-term lakefront development consideration (peripheral) possibly facility relocation of expension. Existing marina view and access concerns. Should be consistent with CDHR lakefront park plans.
Property Values and Tax Revenues	ST: Minor Adverse LT: Moderate Adverse . If the harbor channels could not be main: tained for lack of a dredged material discharge: area, and enterprises were displaced, associated: land use dilapidation and/or redevelopments would likely occur. Higher property values and: associated tax revenues associated with industrial and commercial channel access lake: front developments would likely be lost to less intensive lakefront and recreational-type: developments.	SI: Minor Adverse LI: Minor Beneficial . Construction of facility. Local project cost share. Development of this alternative would provide for continued sharbor charmel maintenance and CDF discharge of dredged polluted material for about 15 years. This would serve to maintain existing harbor charmel dependent enterprises, property values, and associated tax revenues. About 68 acres of waterfront property would eventually be and likely utilized to expand or relocate adjacent to Burke Lakefront Airport: and likely utilized to expand or relocate airport facilities possibly making room for:	ST: Minor Adverse LT: Minor Beneficial . Construction of facility. Local . Construction of facility. Local project cost share. Development of this alternative would provide for continued harbor charnel meintenance and CDF discharge of polluted dredged material for about 15 years. This would serve to asintain existing harbor charnel dependent enterprises, property values, and associated tax revenues. About 60 acres of waterfront property would eventually be created adjacent to the old CDF Site 12, and likely utilized to expand or relocate airport facilities, possibly making room for other lakefront developments.

Evaluation Parameter	: No Action : (Without Project Conditions) :	: Site 10B (15-Year) : Confined Disposal Facility :	Burke East Site (15-Year) Confined Disposal Facility
Noise and Aesthetics	ST: Not Significant LT: Minor Adverse LT: Minor Adverse Lained for lack of a dredged material discharge is area, and enterprises were displaced, associated: land use dilapidation and/or redevelopment would: likely occur. Associated changes in noise and is aesthetics.	ST: Minor Adverse LT: Not Significant Project construction noises and seathetics. Similar to existing harbor in noises and aesthetics. Probable long-term if and use to expand or relocate airport if facilities. Pedestrian and fisherman access is a consideration in long term lakefront development (peripheral) possibly: facilitated/accommodated by CDF related future airport facility relocation or expansion.	ST: Noderate Adverse LT: Noderate Adverse . Project construction noises and sesthetics. Similar to existing harbor noises and sesthetics. Probable long-term land use to expand or relocate airport facilities. Construction of this facility would alter distant views to and from the lake in the vicinity of the East Basin. Created embayment sever outflow water quality concerns. Pedestrian and fisherman access is a consideration in long-term lakefront development (peripheral) possibly facilitated/ accommodated by CDF related future airport facility relocation or expansion.
Community Cohesion	ST: Moderate Adverse LT: Major Adverse . If the harbor channels could not be main tained for tack of a dredged material discharge . area, channel navigation dependent enterprises . (which could suffer economically and may even tually be displaced) would likely be gravely . concerned.	ST: Minor Adverse ST: Moderate Beneficial Project Costs. Development of this alternative would: allow for continued harbor channel main- tenance dredging and CDF discharge of polluted dredged material for about 15 years. Dependent enterprises would be facilitated. About a 68-acre Outer Harbor: forciteted and littoral) area adjacent to: Burke Lakefront Airport would be lost. Port: Authority and City of Cleveland favor this: site and would commit to local costs, including relocation of sewer lines.	ST: Moderate Adverse LT: Minor Beneficial Development of this alternative would allow for continued harbor charmel maintenance dredging and CDF diacharge of polluted dredged material for about 15 years. Dependent enterprises would be facilitated. About a 60-acre Cuter Narbor (protected and littoral) area adjacent to old CDF Site 12 would be lost. Port Authority and city of Cleveland do not favor this site. Water quality and land use concerns.
CULTURAL RESOURCES	ST: Not Significant LT: Minor Adverse . If the harbor channels could not be main. : tained and enterprises were displaced, assoc- : iated land use dilapidation and/or redevelopment: would likely occur. Unless cultural resources : studies were conducted, it is probable that : cultural resources would be disturbed or lost : due to land use changes.	ST: Not Significant LT: Not Significant . The results of cultural resources : review and coordination with the SNPO : indicate that the considered project would so the considered project would so the very more effect on properties listed or eligible for listing on the National segister of Mistoric Places.	ST: Not Significant LT: Not Significant . The results of cultural resources review . and coordination with the SMPO indicate that the considered project would have no effect upon properties listed or eligible for listing on the National Register of Mistoric Places.

Summary Table 4- Relationship of Plans to Environmental Protection Statutes and Other Environmental Requirements

-	Site 108 15-Year CDF	Burke East Site 15-Year CDF
Federal Statutes		
Archeological and Historic Preservation Act, as amended, 16 USC 469, et seq.	full	Full
National Historic Preservation Act, as amended, 16 USC 470a, et seq.	Full	Full
Fish and Wildlife Coordination Act, as amended, USC 661, et seq.	Full	Full
Endangered Species Act, as amended, 16 USC 1531, et seq.	Full	Full
Clean Air Act, as amended, 42 USC 7401, et seq.	Full	Full
Clean Water Act, as amended (Federal Water Pollution Control Act), 33 USC 1251, et s	<u>eq.</u> Full	Fult
Federal Water Project Recreation Act, as amended, 16 USC 460-1(12), et seq.	Full	Full
Land and Water Conservation Fund Act, as amended, 16 USC 4601-11, et seq.	Full	full
National Environmental Policy Act, as amended, 42 USC 4321, et seq.	Full	Full
Rivers and Harbors Act, 33 USC 401, et seq.	Full	Full
Wild and Scenic Rivers Act, as amended, 16 USC 1271, et seq.	Full	Full
Coastal Zone Management Act, as amended, 16 USC 1451, et seq.	Full	Full
Estuary Protection Act, 16 USC 1221, et seq.	N/A	N/A
Marine Protection, Research and Sanctuaries Act, 22 USC 1401, et seq.	N/A	R/A
Watershed Protection and Flood Prevention Act, 16 USC 1001, et seq.	Full	Full
Farmland Protection Policy Act, (7 USC 4201) et seq.	Full	Full
FAA Notice of Proposed Construction of Alteration	Full	N/A
Executive Orders, Memoranda, Etc.		
Protection and Enhancement of the Cultural Environment (EO 11593)	Full	Full
Flood Plain Management (EO 11988)	Full	Full
Protection of Wetlands (EO 11990) Environmental Effects Abroad of Major Federal Actions (EO 1211/)	Full Full	Full Full
Environmental Effects Abroad of Major Federal Actions (EO 12114) Analysis of Impacts on Prime and Unique Farmlands (CEO memorandum, 30 Aug 76)	Fuli	Full
ALBETTS OF THEORYS OF PETITING AND DELIQUE PAINTAINS LODG INSHDEATION, 30 AUG 70)	rutt	rutt
Local Land Use Plans	Full	Full

The compliance categories used in this table were assigned based on the following definitions:

a. Full compliance - All requirements of the statue, EO, or other policy and related regulations have been met for this stage of the study.

b. Partial Compliance - some requirements of the statute, EO, or other policy and related regulations, which are normally met by this stage of planning, remain to be met.

c. Noncompliance - None of the requirements of the statute, or other policy and related regulations have been met.

d. N/A - The statute, EO, or other policy and related regulations are not applicable for this study.

9. COORDINATION

The proposed project has been and/or is being coordinated with Federal, State and local agencies, special interest groups, and private industry during the site selection and project planning process. These agencies include the U.S. Environmental Protection Agency, the U.S. Fish and Wildlife Service, the U.S. Coast Guard, Ohio Department of Natural Resources, Ohio Department of Transportation, Ohio Environmental Protection Agency, Ohio Historic Preservation Office, the City of Cleveland, Cleveland-Cuyahoga County Port Authority, Cuyahoga County Commissioners, Northeast Ohio Area Council of Governments. Cleveland Waterfront Coalition, North Coast Development Corporation, Lake Carriers Association, and the International Longshoreman's Association, local citizens, environmental groups, and public officials. Four meetings were held during the initial study and two additional meetings were held in 1988 to discuss the site proposed in the September 1989 Supplemental Letter The Buffalo District met with City of Cleveland officials in February 1991 to discuss the Burke East 15-year CDF The meeting led to the termination of work on the Burke East site and identified Site 10B as the proposed CDF location presented in this Letter Report.

10. CONCLUSIONS

The majority of sediments dredged from the Cuyahoga River and Cleveland Harbor, Cleveland, Ohio, are classified as polluted and not suitable for unrestricted open-water disposal. Approximately 300,000 cubic yards of polluted sediments are dredged annually from the harbor and Federal channels and require containment.

Site 10B is the selected containment site for these sediments. The estimated first cost of construction of a CDF at this site is \$32,880,000 (August 1991 price levels) which includes \$3,980,000 associated with the extension of six storm sewer outfalls. Site 10B has a benefit-to-cost ratio of 1.78 and provides approximately 15 years of capacity. The project is considered to be reasonably environmentally acceptable. When the Site 10B CDF is filled it will allow for expansion of the Burke Lakefront Airport.

The raising of Dike 14 remains a necessary as part of the overall plan to dispose of polluted sediments dredged from Cleveland Harbor. The raising will be undertaken when required to provide interim capacity until the Site 10B site is constructed. The raising of Dike 14 will be in accordance with the raising of Dike 14, Cleveland, Ohio, Design Analysis dated June 1989 (approval pending completion of NEPA process).

11. RECOMMENDATION

It is recommended that the proposed plan to construct a new CDF at Site 10B for the containment of polluted dredged material from Cleveland Harbor be approved as the basis for preparation of the design analysis.

APPENDIX A

CORRESPONDENCE

City of Cleveland

MICHAEL R. WHITE, MAYOR

CITY PLANNING COMMISSION HUNTER MORRISON, DIRECTOR

501 CITY HALL CLEVELAND, OHIO 44114 (216) 664-2210

February 4, 1992

Mr. George B. Brooks, P.E.
Engineering/Planning Division
Chief
U.S.A. Army Corps of Engineers
1776 Niagara Street
Buffalo, New York 14207-3199

ATTENTION: David Gerland

Dear Mr. Brooks:

Thanks for your December 18, 1991 response to my request for your preliminary cost estimate for the Cleveland Burke West CDF (Site 10B), including your trunk sewer outfall extension cost estimates, the latter of which we understand are to be funded by others.

Your sewer estimates are related to sewer sizes without location identification. Our records show totally different pipe arch sizes than those you listed. Also, nowhere in our records can we locate the present outfall location of the East 38 Street pipe arch sewer. It was obviously extended when you constructed Site 13 but does not show on our sewer maps.

In the interest of coordination, we are asking our Port Control Director, Cynthia Rich to send you all the assembled sewer map data for Site 10B as an enclosure to the city's "expression of interest" package which was discussed in our January 28, 1992 telecon with you and David Gerland. It should reach you in the near future.

Thanks again for your cooperation.

Sincerely,

Hunter Morrison
Planning Director

HM/LW:ke

CC: Joseph Zalenski; Layton Washburn

An Equal Opportunity Employer

Study Management/Project Engineering Branch

SUBJECT: Confined Disposal Facilities (CDF), Cleveland,

Honorable Michael R. White Mayor, City of Cleveland 601 Lakeside Avenue, N.E. City Hall - Room 106 Cleveland, Ohio 44114

Dear Mayor White:

The meeting of February 14, 1991, with members of your staff, Mr. George Brooks and Mr. Richard Mammoser of my staff, was both productive and informative. At the meeting, the City and the Corps agreed that the Burke East site would no longer be considered for construction of the new CDF. The Corps also agreed to consider an alternate site along the Burke Airfield for development of the CDF. With receipt of your August 9, 1991 Letter of Intent to act as the Local Sponsor, I have initiated the first steps to develop this site. The purpose of this letter is to acknowledge your letter, to advise you of certain requirements for which you will be responsible, and to update you on the overall schedule for the CDF program. Copies of the preliminary CDF development schedules are attached for your reference.

In order to construct the CDF along Burke Airfield, it will be your responsibility as the Local Sponsor to provide for relocations/modifications of the storm sewer culverts that are located along the north edge of the existing fill. Available drawings indicate that there are six such culverts. Since these utility relocations/modifications should proceed or be incorporated into the CDF construction, your designs should be initiated as soon as possible. The Buffalo District is willing to perform this engineering, and/or construction on a cost reimbursable basis. If you desire the Corps to accomplish this engineering work, funds would have to be agreed to and provided by the city of Cleveland before the engineering work begins. Please advise me if you would like the Corps to perform this engineering and construction effort.

The Local Sponsor will also be required to furnish all Lands, Easements, and Rights-of-Way (LER) necessary for construction, operation, and maintenance at the CDF.

Study Management/Project Engineering Branch SUBJECT: Confined Disposal Facilities (CDF), Cleveland, Ohio

As discussed at the February 14, 1991 meeting, the CDF at the newly selected site could be complete and ready for use in time for the 1997 dredging season. Since the existing capacity of Dike 14 will be exhausted by about 1994, I am proceeding with plans to modify the Dike 14 facility and extend its life by about 3 years. As previously agreed, we will only use the additional capacity at Dike 14 until we have another disposal site ready for use.

I am encouraged by the agreement relative to the location of the new Cleveland CDF. Mr. Richard Mammoser of my Study Management/Project Engineering Branch, will continue to coordinate and work with Mr. Joseph Zalenski of your Economic Development Department, to assure timely completion of this most necessary project. Please contact Mr. Mammoser at 716-879-4229 if additional information is required.

Sincerely,

SIGNED

John W. Morris Colonel, U.S. Army Commanding

Enclosure

Mammoser:emp:9/2/91:4229
DeJohn:CENCB-PE-S /36/2 9/6/4,
Gilbert/Brooks:CENCB-PE / CEG 1/6
MAJ Plank:CENCB-DE
COL Morris:CENCB-DE

MAME OF DOCUMENT CIEVE-COF

ROOM 106 • CITY HALL 601 LAKESIDE AVENUE CLEVELAND, OHIO 44114 (216) 664-2800

City of Cleveland

MICHAEL R. WHITE, MAYOR

DEPARTMENT OF LAW CRAIG S. MILLER DIRECTOR

August 9, 1991

Colonel John W. Morris
Department of the Army
Buffalo District - Corps of Engineers
1776 Niagara Street
Buffalo, New York 14207-3199

Attention: Mr. Richard Mammoser

Re: New Confined Disposal Facility

at Cleveland, Ohio

Dear Colonel Morris:

The City of Cleveland will agree to act as the Local Sponsor for a Confined Disposal Facility ("CDF") to be constructed and filled by the Army Corps of Engineers, at a site located along the northern shoreline of Burke Lakefront Airport in Cleveland, Ohio. This new site is a modified version of the previously studied Sites 10 and 10A, which the City will denominate as site 10B for purposes of this notice. Attached is an Exhibit A to this letter describing this new site.

The City will bear the cost of the sewer extensions needed to complete this project.

The City will enter into a Local Cooperation Agreement ("L.C.A.") with the Army Corps of Engineers for the construction, maintenance and filling of the Dike, provided that the City and Corps can reach agreement on the terms of the L.C.A., and provided that such an agreement is authorized by Cleveland City Council.

Director Cynthia D. Rich, of the Department of Port Control of the City, has administrative authority over Burke Lakefront Airport and the City Harbor. She will act on behalf of the City as the official contact throughout the project. Colonel John W. Morris July 29, 1991 Page 2

She may be contacted at the following address:

Cynthia D. Rich, Director
Department of Port Control
Second Floor - Passenger Terminal Building
Cleveland Hopkins International Airport
5300 Riverside Drive
Cleveland, Ohio 44135-3193
(216) 265-6022.

The City's Law Department will coordinate the discussions concerning the L.C.A. The contact person is William M. Ondrey Gruber, who can be contacted at the following address:

William M. Ondrey Gruber Chief Assistant Director of Law Room 106 - City Hall 601 Lakeside Avenue Cleveland, Ohio 44114 (216) 664-2693.

If you have any questions, please contact Joseph Zalenski, the City's CDF Project Manager at (216) 664-3671, or Bill Gruber at the telephone number listed above.

I appreciate the Corps' cooperation in determining the location of a new CDF, and I hope that the new site can be constructed and brought into service as soon as possible.

Very truly yours,

Michael R. White

Maybr, City of Cleveland

MRW:11s

Cc: Cynthia D. Rich
Joseph A. Marinucci
Lawrence Kassouf
David Fleshler
Ron Toth
Michael Barth
Hunter Morrison
Joseph Zalenski
Barbara J. Danforth
William M. Ondrey Gruber
Admiral Fugaro

Exhibit A

July 29, 1991

Confined Disposal Facility at Burke Lakefront Airport - Site 10B

Metes and Bounds

Starting at the southwesterly corner of CDF SITE 13; thence 450 ft.+ to the northwesterly corner of CDF SITE 13; thence 900 ft.+ to the northeasterly corner of CDF SITE 13; thence 400 ft.+ to the northwesterly corner of CDF SITE 9; thence 4,500 ft.+ westerly along the prolongation of the northerly line of CDF SITES 9 & 12; thence 550 ft.+ southerly at right angles to a point in the northerly line of Burke Lakefront Airport; thence 3,600 ft.+ easterly along the northerly line of Burke Lakefront Airport to the place of beginning, containing therein 68 acres, more or less.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

IN REPLY REFER TO:

Reynoldsburg Field Office 6950-H Americana Parkway Reynoldsburg, Ohio 43068-4115 (614) 469-6923

February 12, 1991

LOF Site

Colonel John W. Morris District Engineer Buffalo District, Corps of Fngineers 1776 Niagara Street Buffalo, New York 14207

Attention: Len Brynarski:

Dear Colonel Morris:

Len Brynarski has advised us that Site 10 Confined Disposal Facility is again under consideration for construction in the Cleveland Harbor area. Site 10 (a proposed 85 acre site) would be located adjacent to Burke Lakefront Airport.

At this time, we do not believe that additional field studies would be needed if this site is selected as the location for a Cleveland Harbor Confined Disposal Study. However, we would require some time to review existing data and/or studies and prepare Fish and Wildlife Coordination Act reports.

Sincerely,

William J. Kurey

William & Kurey

Acting Supervisor

APPENDIX B

ECONOMIC EVALUATION

CLEVELAND HARBOR LETTER REPORT ON CONFINED DIKE DISPOSAL PROJECT CLEVELAND, OHIO

TABLE OF CONTENTS

B1.		roduction	1
	a.	Report Purpose.	1
	b.	Location And Tributary Area	1
	c.	Project Dimensions	3
	đ.	Sites Evaluated	3
	e.	Project Evaluation Procedures	7
B2.	Com	mercial Navigation	8
	a.	Introduction	8 8
	b.	Tonnage Levels	8
	c.	Current Major Harbor Users	10
	đ.	Shoaling Activity	13
	e.	Origin/Destination Harbor Traffic Patterns: Iron Ore,	
		Limestone, Salt, Cement	15
	f.	Annual Transportation Costs	19
		Time Stream Of Annual Transportation Costs, Iron Ore,	
	_	Limestone, Salt, Cement	40
вз.	Bene	efit Evaluation	40
	a.	Introduction	40
	b.	Average Annual Transportation Costs Avoided	40
		Average Annual Transportation Benefits	62
B4.	Aver	age Annual Costs	63
	a.	Average Annual Construction Costs	63
	b.	Average Annual Maintenance Costs	64
		Total Average Annual Costs	64
B5.	Bene	fit Cost Summary	64
		Benefit Cost Summary	64
		TABLES	

Tabl	e B1	- Historical Tonnages At Cleveland Harbor, 1984-1989	9
Tabl	e B2	Location Of Docks Involved In Bulk Commodity	
		Movements	10
Tabl	e B3	. Affected Harbor Tonnages By Harbor Reach-	
		1989 Movements	12
Tabl	e B4	- Yearly Shoaling Rate By Harbor Reach And Starting	
		Channel Depth	15
Tabl	e B5	- Origin Ports For Iron Ore-1989	17
Tabl	e B6	- Origin Ports For Limestone-1989	17
Tabl	e B7	- Destination Ports For Salt-1989	18
rabl	e B8	- Origin Ports For Cement-1989	18
[abl	e B9	- Iron Ore Receipts By Shipment Ports, Fleets-1989	21
rabl	e Bl	0- Limestone Receipts By Shipment Ports, Fleets-1989	22
[abl	e B1	1- Salt Shipments By Receiving Port, Fleets-1989	23

Tables- Continued

Table Table	B	12- 13-	Cement Receipts By Shipment Ports, Fleets-1989 Iron Ore Trade Routes And Prototype Vessel	24
			Characteristics, Cleveland Harbor, Ohio limestone Trade Routes And Prototype Vessel	25
			Characteristics, Cleveland Harbor, Ohio	26
Table	В	15~	Salt Trade Routes And Prototype Vessel Characteristics, Cleveland Harbor, Ohio	27
Table	В	16-	Cement Trade Routes And Prototype Vessel Characteristics, Cleveland Harbor, Ohio	28
mahla	ъ	17-	Financial Characteristics Of Prototype Vessels	24
				27
			Transportation Costs By Harbor Location By Channel Pepth-Iron Ore	30
Table	В		ransportation Costs By Harbor Location By Channel epth-Limestone	37
Table	В	20-1	ransportation Costs By Harbor Location By Channel epth-Salt	35
m- L 1 -	10			
		. D	ransportation Costs By Harbor Location By Channel epth-Cement	38
			nnual Transportation Costs-Outer Harbor Iron Ore-	41
Table	B2		nnual Transportation Costs-Lower Cuyahoga Iron re37 Feet Shoaling Per Year	42
Table	B2	2C-A	nnual Transportation Costs-Upper Cuyahoga Iron re: Docks With .7 Feet Of Shoaling Per Year	43
Table	В2	2D-A	nnual Transportation Costs-Upper Cuyahoga Iron	
Table	В2		re:Docks With 1.06 Feet Of Shoaling Per Year nnual Transportation Costs-Lower River Limestone:	44
		D	ocks With .37 Feet Of Shoaling Per Year nnual Transportation Costs-Middle River Limestone:	45
		D	ocks With .44 Feet Of Shoaling Per Year	46
		D	nnual Transportation Costs-Middle River Limestone: ocks With .53 Feet Of Shoaling Per Year	47
		D	nnual Transportation Costs-Middle River Limestone: ocks With .59 Feet Of Shoaling Per Year	48
Table	В2		nnual Transportation Costs-Middle River Limestone: ocks With .39 Feet Of Shoaling Per Year	49
Table	B2		nnual Transportation Costs-Upper River Limestone: ocks With .7 Feet Of Shoaling Per Year	50
Table	B2	3G-A	nnual Transportation Costs-Upper River Limestone:	
Table	В2	4A-A	ocks With 1.06 Feet Of Shoaling Per Year nnual Transportation Costs-Old River Canadian	51
			alt-Lake Erie Ports	52
rable	B2		nnual Transportation Costs-Old River Canadian	53
Table	B2	4C-A	nnual Transportation Costs-Old River Canadian	54
rahle	ВЭ		nnual Transportation Costs-Old River U.S.	J 74
		Sa	alt-Lake Michigan Ports	55
Table	B2		nnual Transportation Costs-Old River U.S.	56
Table	B2		nnual Transportation Costs-Old River U.S.	
			alt-Detroit River Ports	57

Tables- continued

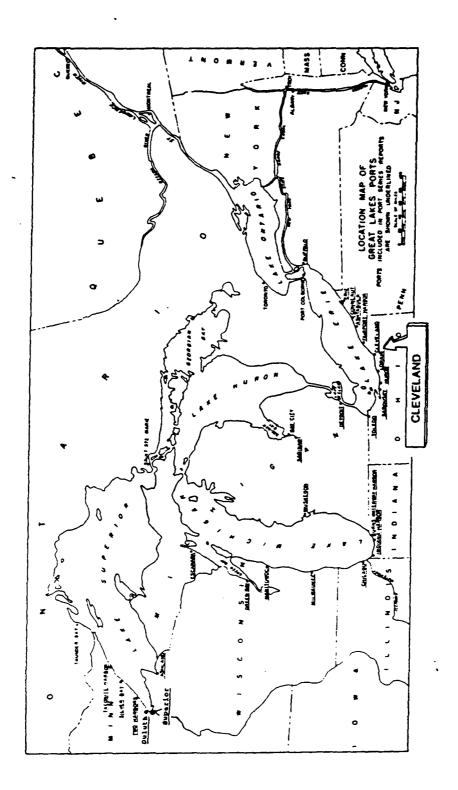
Table	B24G-Annual Transportation Costs-Old River U.S.	
	Salt-Lake Erie Ports	58
Table	B24H-Annual Transportation Costs-Old River U.S.	
	Salt-St. Lawrence Ports	59
Table	B25A-Annual Transportation Costs-Old River/Lower Cuyahoga	ì
	River U.S. Cement-Docks With .37 Feet Of Shoaling	
	Per Year	60
Table	B25B-Annual Transportation Costs-Old River/Lower Cuyahoga	l
	River Canadian Cement-Docks With .37 Feet Of	
	Shoaling Per Year	61
Table	B26- Average Annual Transportation Benefits For Site 10B-	•
		62
Table	B27- Summary Of Average Annual Costs-Site 10 B	63
		64

FIGURES

Figure	В	1-Location Map	2
Figure	В	2-Cleveland Harbor Project Map- Outer Harbor	4
Figure	В	3-Cleveland Harbor Project Map- Cuyahoga And Old River	: 5
Figure	В	4-Location Of CDF Site 10B	6
Figure	В	5-Harbor Reaches	11
Figure	В	6-Harbor Sections Developed For Shoaling Analysis	14
Figure	В	7-Great Lakes Connecting Channels And St. Lawrence	
_		River Water Levels And Depths	39

CLEVELAND HARBOR LETTER REPORT ON CONFINED DIKE DISPOSAL PROJECT CLEVELAND, OHIO

B1. INTRODUCTION


a. Report Purpose.

The purpose of this letter report is to determine the economic feasibility of constructing a confined disposal facility (cdf) at Site 10B for the containment of bottom sediment dredged from the federal navigation channels at Cleveland Harbor. The CDF would provide a facility to contain polluted materials dredged from the Cleveland Harbor. If the facility were not constructed, Cleveland Harbor could not be dredged. The CDF is necessary to maintain adequate shipping channel depths. If adequate navigation channel depths are not maintained, the efficiency of Great lakes fleet Carriers would be greatly reduced and could result in uneconomic operations. If this situation developed, Cleveland Harbor could cease to exist as a viable harbor. Thus the CDF is necessary for the continued economic viability of Cleveland Harbor.

The impact of discontinuing dredging at Cleveland Harbor will impact on the transportation costs of the four major bulk commodities using the harbor: iron ore, limestone, salt and cement. The termination of dredging will result in the continual shoaling of the federal channels. This in turn will decrease the draft that commercial vessels can enter the harbor at. decrease in commercial vessel draft will result in less tons of bulk commodities being carried by freighters per trip to/from the harbor. More trips will have to be made to deliver the same amount of bulk materials to the various end users. result in an increase in transportation costs for bulk commodities, over time, as the shoaling continues. As the transportation costs for the waterborne mode increase at Cleveland Harbor, water becomes less competitive as a transportation mode. Traffic ultimately could shift to other Great Lakes harbors, shift to alternative modes such as rail, or cease to exist since the industries served by waterborne movements could become uncompetitive at existing plant locations. This increase in transportation cost will be compared to the cost of building the proposed dike disposal at Site 10B.

b. Location And Tributary Area.

Cleveland Harbor is on the south shore of Lake Erie, at the mouth of the Cuyahoga River. The harbor is 33 miles southwest of Fairport Ohio, and 28 miles northeast of Lorain, Ohio (see Figure B1.) The city of Cleveland is situated on the East and West bank of the Cuyahoga River, near its mouth. The city is located in Cuyahoga County. The Cuyahoga River drainage basin covers approximately 810 square miles.

c. Project Dimensions.

An overview of the federal harbor is provided in Figures B2 and B3. The major project components follows.

- 1. The Port of Cleveland consists of an Outer Harbor and an Inner Harbor. The Outer harbor consists of a five mile long breakwall protected lakefront. the Inner Harbor consists of the lower, deep draft section of the Cuyahoga River, and connecting Old River.
- 2. The Outer Harbor has two entrances from Lake Erie (See Figure B2.). The west (main) entrance is through a dredged channel at the west end of the Outer Harbor. This entrance is between the outer ends of the two converging breakwaters (east and west arrowhead breakwaters) extending outward from the east and west basin breakwaters. The other entrance is at the east end of the Outer Harbor area between the breakwater and the shore.

The west entrance has a 29 foot deep lake approach channel, which flares from deep water in the lake to a channel width of 600 feet between the outer ends of the Arrowhead breakwaters. A 28 foot deep entrance channel extends from the inner end of the lake approach channel, through the outer harbor to the lakeward ends of the piers at the mouth of the Cuyahoga River. The entrance channel varies in width from 750 to 220 feet.

3. The Inner harbor includes about 5.8 miles of the Cuyahoga River and about one mile of the Old River, the former outlet of the Cuyahoga River (See Figure B3). The Old River extends westward from a point about 0.4 mile above the mouth of the Cuyahoga River. The mouth of and entrance channel to the Cuyahoga River are in line with the main entrance to the Outer The entrance channel is protected by two Harbor from the lake. parallel piers, 325 feet apart. Widths in the Cuyahoga River vary from 130 to 325 feet, except at the bends and in the existing turning basin, where a width of 800 feet is available. the turning basin is located 4.8 miles above the mouth. The project provides a depth of 27 feet in the lower Cuyahoga River from the lakeward end of the piers to immediately above the junction with the Old River. The remainder of the Cuyahoga to the vicinity of mile 5.8 has a depth of 23 feet. The Old River is maintained to a depth of 23 feet to the Sand Products Corporation Dock. The remainder of the Old River is maintained at 21 feet.

d. <u>Site Evaluated</u>.

One confined disposal facility site will be evaluated. This site, Site 10B, runs adjacent to and north of the Burke airfield within Cleveland Harbor Lakefront Airport. (See Figure B4). The CDF attaches to former Corps of Engineers disposal areas located east of the airport, and extends 4,500 feet westward, parallel to the east entrance channel. The CDF will enclose approximately 70

Figure B2- Cleveland Harbor Project Map- Outer Harbor.

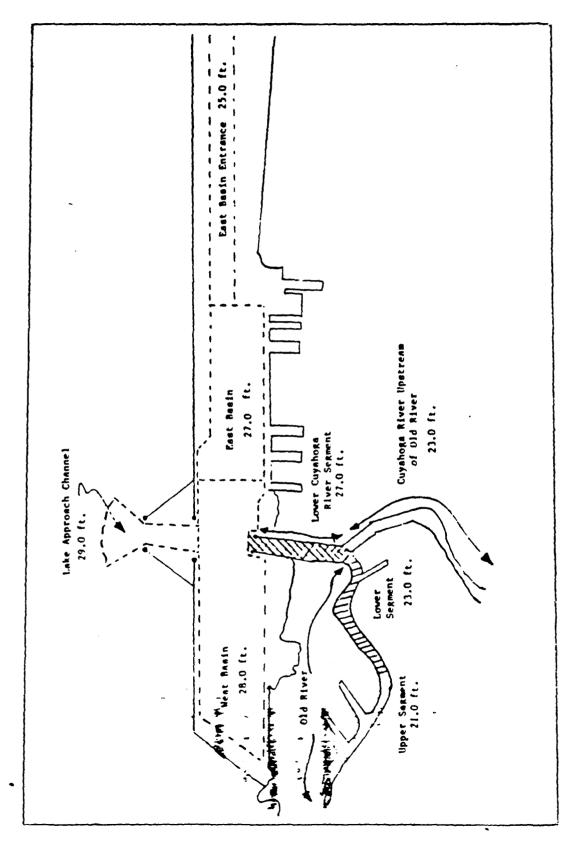


Figure B3- Cleveland Harbor Project Map- Cuyahoga and Old River.

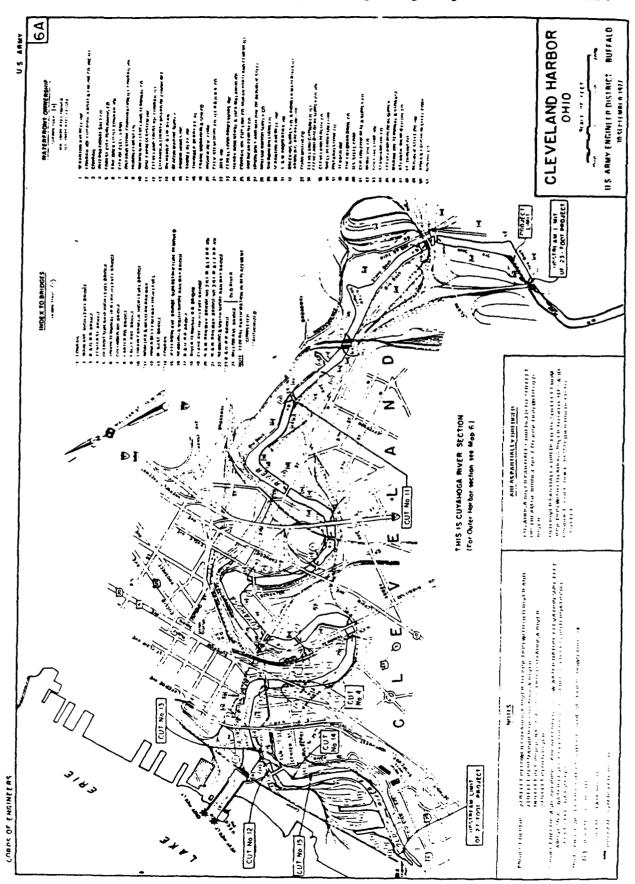
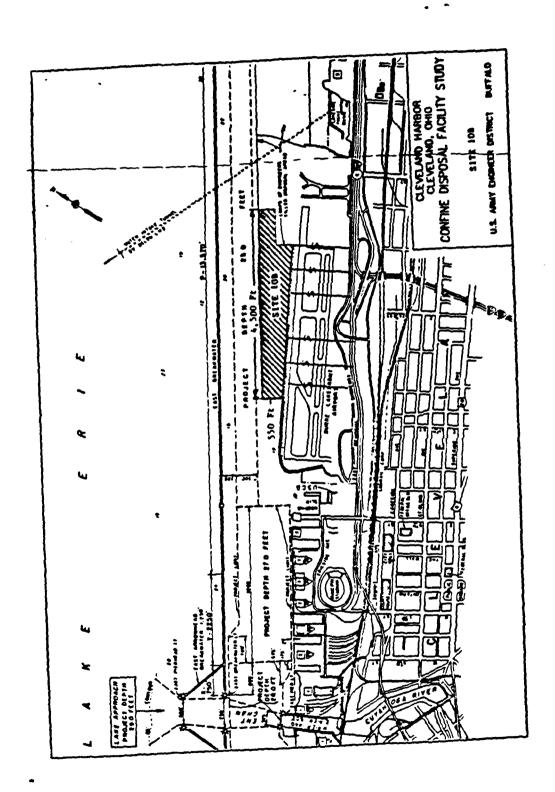



Figure B4. - Location Of CDF Site 10B

acres, have a holding capacity of 3,500,000 cubic yards, have a dike elevation of + 14 feet lwd, and cost approximately \$32m. Construction is scheduled to begin in 1994, take three years to complete, and be completed in 1997.

e. Project Evaluation Procedures.

The current evaluation will compare the cost of building the described disposal facility to the increase in transportation costs if dredging maintenance were discontinued. The evaluation period starts in 1997, will have a fifty year evaluation period, use the current federal discount rate of 8.50 percent and reflect August 1991 prices.

Benefits to the project will be the difference in transportation costs for the four major bulk commodities (iron ore, limestone, salt and cement) between the "without project" condition and the "with project" condition.

The "without project" condition assumes maintenance dredging will take place up to 1997. No maintenance dredging will be performed during the evaluation period: 1997 to 2047. This will result in the Outer Harbor, the Cuyahoga River and the Old River shoaling up to some equilibrium channel elevation. equilibrium channel elevations for the Outer Harbor, the Cuyahoga River and the Old River are: 19 feet below lwd, 15 feet below lwd and 15 feet below lwd respectively. Annual transportation costs during the 50 year evaluation period will be calculated under the "without project" condition for affected bulk commodities. Annual transportation costs will be affected by the shoaling rates that pertain to the Outer Harbor, the Cuyahoga River and the Old River. The time stream of these transportation costs will be converted to an average annual dollar value, given an 8.50 percent annual interest rate and a 50 year evaluation period.

Average annual transportation costs under "with project" conditions will also be calculated for the four major bulk commodities. Site 10 B is assumed to hold 15 years of dredging. Consequently dredging will take place from project year 1 to project year 15. Dredging will be discontinued from project year 16 to project year 50. Thus under the "with project" condition, transportation costs from project year 1 to project year 15 will be equal to current transportation costs. Shoaling of the channels will commence in project year 16 and continue until equilibrium channel depths have been reached. Transportation costs will increase from project year 16 to the year when all the channels have attained their equilibrium channel depths. This time stream of transportation costs will be converted to an average annual dollar value, given an 8.50 percent annual interest rate and a 50 year evaluation period.

Annual shoaling rates will be used as inputs to determining annual transportation costs under the "without" and "with" project conditions over the evaluation period. The number of

years of dredging the dike can accommodate will have an impact on the "with project condition" transportation costs. Average annual "with project" condition transportation costs will be reduced as the number of years of dredging the dike can accommodate increases. This is because the increase in transportation costs due to shoaling will be deferred further into the future as the cubic capacity of the dike disposal area increases.

B2. COMMERCIAL NAVIGATION.

a. Introduction.

This section will describe the current major harbor users that will be impacted by deferred maintenance of existing authorized Federal channels; estimate tonnage levels affected; present shoaling rates throughout the harbor over the evaluation period; evaluate the harbors traffic patterns with respect to origin-destination routes by commodity by ship size; develop transportation costs over the evaluation period for the "without project" condition and the "with project" condition for iron ore, limestone, salt and cement; and convert these transportation costs to average annual transportation costs.

b. Tonnage Levels.

Table B1 presents historical tons of iron ore, limestone, salt and cement received/shipped at Cleveland Harbor. Average yearly iron ore shipments between 1984 and 1989 was 8,342,289 short tons. Iron ore shipped from Canadian ports to Cleveland Harbor has averaged approximately 1,120,603 tons between 1984 and 1989. This is approximately 13 percent of annual iron ore receipts over this period.

Average yearly limestone receipts between 1984 and 1989 was 2,036,949 short tons. All receipts were from U. S. ports during this time period.

Average yearly salt shipments between 1984 and 1989 was 840,997 short tons. Approximately 61 percent (513,978 short tons) of the shipments were to U. S. ports.

Average yearly cement receipts between 1984 and 1989 was 447,675 short tons. Over 89 percent (398,611) of cement receipts have typically come from U. S. ports.

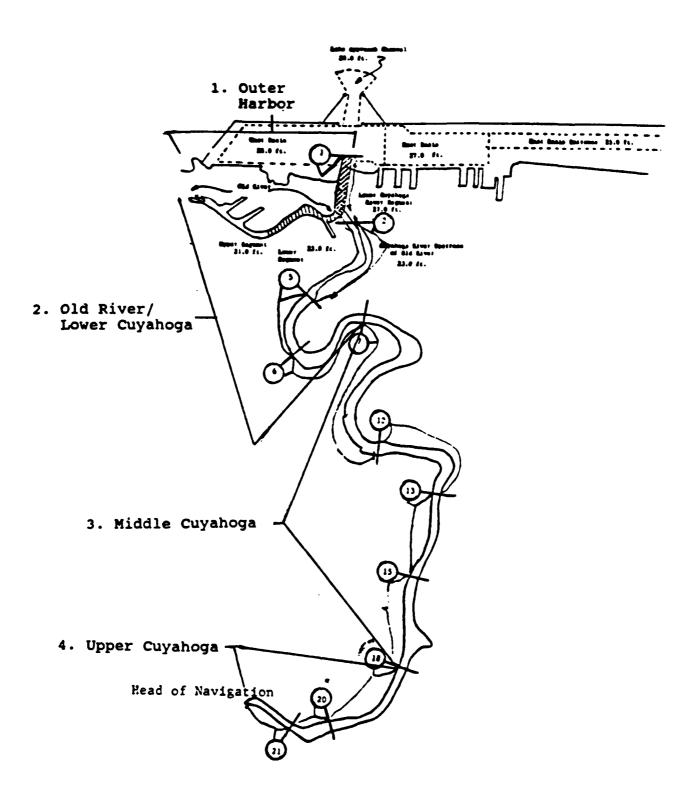
Average yearly tonnages for these four commodities are 11,667,910 from 1984 to 1989. The origin /destination routes of these commodities, and the vessels that service these routes are inputs needed to perform the transportation cost analysis. Tonnage levels exhibited during the 1989 navigation season were felt to be representative of future commodity movements through the harbor during the evaluation period. Consequently, 1989 traffic levels and movements were taken as being representative

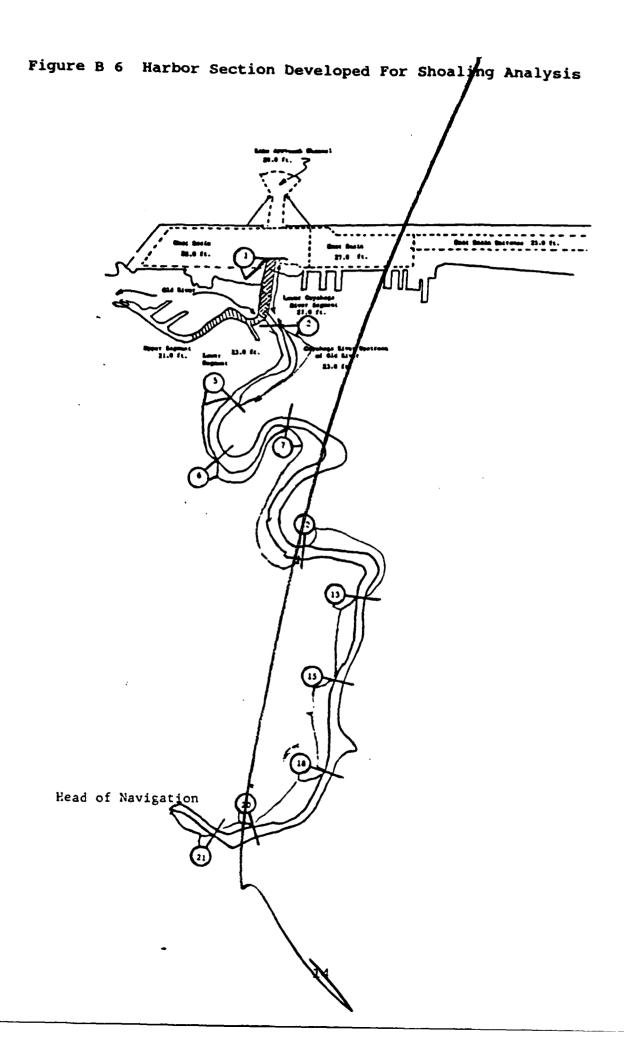
Table B1.- Historical Tonnages At Cleveland Harbor- 1984- 1989

	1984	1985	1986	1987	1988	1989	Average Tons
Iron Ore Receipts Foreign Canadian Domestic	1,230,217	42,691 992,423 7,393,173	890,594 6,146,371	889,354 7,633,268	1,157,288	1,563,741 6,618,610	7,115
Subtotal	9,016,367	8,428,287	7,036,965	8,522,622	8,867,141	8,182,351	8,342,289
Limestone Receipts Domestic	1,142,888	1,645,739	1,789,433	2,336,037	2,640,008	2,667,590	2,036,949
Salt Shipments Foreign Canadian Domestic	25,153 303,027 592,887	15,421 340,654 574,650	7,293 377,437 600,176	153,457 435,452	1,265 299,122 356,242	19,630 419,651 524,462	11,460 315,558 513,978
Subtotal	921,067	930,725	984,906	588,909	626,629	963,743	840,997
Cement Receipts Canadian Domestic	373,685	380,348	29,511 372,078	84,071 413,205	86,368	94,435	49,064
Subtotal	373,685	380,348	401,589	497,276	527,531	505,623	447,675
Commodity Subtotals Total Harbor Tonnage	11,454,007 12,920,708	11,385,099 13,767,174	10,212,893 12,188,278	11,944,844 13,914,047	12,691,309 14,550,876	12,319,307 14,687,619	11,667,910 13,671,450
Comm As % Total	88.65%	82.70%	83.79%	85.85%	87.22%	83.88%	85.35%

for the evaluation period and were used as inputs to perform the transportation cost analysis under "without" and "with project" conditions.

c. Current Major Harbor Users.


The federal channels in Cleveland Harbor, Ohio, comprise the focal point for bulk transportation activities in this city (Figures 2 and 3). Although local industry accounts for a small portion of the commerce through the port, the primary movement of commerce entails the transshipment of dry bulk commodities to or from interior points. Four bulk commodities have historically accounted for over 82 percent of the commercial traffic entering/leaving the harbor. These four bulk commodities are iron ore, limestone, salt and cement. The major docks involved in the handling of these commodities, and their locations are presented in Table B2.


Table B2. Location of Cleveland Harbor Docks Involved In Bulk Commodity Movements

COMMODITY	DOCK	OPERATOR	LOCATION
Iron Ore	Dock 10 Dock 55	C&P	West Basin-Whiskey Island West Basin-Whiskey Island
	Dock 50	Ontario Stone	Mouth Of Cuyahoga
	Dock 160		Old River
	Dock 250	United Ready Mix	Cuyahoga River
	Dock 410	LTV Steel	Upper Cuyahoga River
	Dock 435		Upper Cuyahoga River
	Dock 440	LTV Steel	
Limestone	DOCK 440	Liv Steet	Upper Cuyahoga River
rimescone	22 -/- 20	0-1	March of Ownsham
	Dock 50	Ontario Stone	Mouth Of Cuyahoga
	Dock 77	Ontario Stone	Old River
	Dock 160	Ontario Stone	Old River
	Dock 250	United Ready Mix	Lower Cuyahoga River
	Dock 598	Ford Motor	Middle Cuyahoga River
	Dock 580		Middle Cuyahoga River
	Dock 329	Cleveland Builders	Middle Cuyahoga River
	Dock 360	Clifton Concrete	Middle Cuyahoga River
	Dock 378	Cleveland Builders	- -
	Dock 410	LTV Steel	Upper Cuyahoga River
	Dock 435	LTV Steel	Upper Cuyahoga River
	Dock 440	LTV Steel	Upper Cuyahoga River
Salt	Dock 115	International Salt	
- -		***************************************	****
Cement	Dock 178	Huron Cement	Old River
	Dock 673	Medusa Cement	Cuyahoga River

The harbor itself has been divided into four distinct areas: the Outer harbor, the Old River and the Lower Cuyahoga, The Middle Cuyahoga and the Upper Cuyahoga (See Figure B5). The "Outer Harbor" consists of all docks located at the Lake Front.

Figure B5. Harbor Reaches

The "Old River and Lower Cuyahoga" consists of all docks located on the Old River as well as all docks located on the Cuyahoga River up to the Carter Road Bridge. The "Middle River" includes all docks located on the Cuyahoga River between the Carter Road Bridge and the upper end of the Turning Basin. This is approximately 2.6 miles. The Upper Cuyahoga consists of all docks located between the upper end of the Turning Basin and the head of commercial navigation.

Affected commodity tonnages for 1989 were subdivided by the four harbor reaches. Table B3 summarizes affected harbor tonnages by harbor reach. A brief description of the commercial traffic patterns of the harbor follows.

Table B1. Affected Harbor Tonnages By Harbor Reach-1989 Movements

	<i>O</i> uter Harbor	Lower Cuyahoga River Old River	Middle Cuyahoga River	Upper Cuyahoga River	Total Tonnage
Iron Ore	2,380,542	563,697		5,257,138	8,201,377
Limestone		1,421,308	830,619	415,663	2,667,590
Salt	19,630	944,113			963,743
Cement		505,623			505,623
	2,400,172	2,434,736	830,619	5,672,801	12,338,333

1. Iron Ore- Eight docks were active in the receipt of iron ore in 1989. Two of these docks were located in the Outer Harbor, three on the Old River and lower Cuyahoga, and the remaining three were located on the upper Cuyahoga River.

Receipt of iron ore in the Outer Harbor goes to a transshipment operation that rails the iron ore to inland steel plants for use in their steel production process. Shipments of iron ore to docks located in the upper Cuyahoga River service LTV steel production facilities located adjacent to these docks.

2. Limestone-Twelve docks, some large users, many small users, were active in the limestone trade in 1989. Individual docks are located throughout the harbor on the Old River/lower Cuyahoga (4 docks) the middle Cuyahoga (5 docks) and the upper Cuyahoga River (3 docks).

Limestone vessels utilize all available channels between the main entrance, the Old River and Cuyahoga River. Trips for vessels which transport limestone are distributed 54 percent to the Old River/lower Cuyahoga, 31 percent to the middle Cuyahoga and 15 percent to the upper Cuyahoga. Deferred maintenance would have a much greater impact on those vessels which must navigate

the entire length of the River. This is true since the shoaling rate increases as one moves up the River.

The most active stone docks at the harbor are operated by Ontario Stone. This company's docks, which are located at the mouth of the Cuyahoga River and on the Old River, received more than 36 percent of total harbor limestone receipts. Another active limestone user is LTV Steel which has three limestone docks located in the upper Cuyahoga. These docks received 16 percent of the harbors limestone receipts. The remaining limestone receipts were distributed among six docks located in the lower and middle Cuyahoga River area. These smaller firms are primarily active in the construction aggregate business.

- 3. Salt.- A large amount of salt shipments originate from a Whiskey Island dock located adjacent to the Old River. This single dock accounts for almost all shipments which leave the harbor. Shipments from this dock totaled 944,113 short tons in 1989. Over 55 percent of the salt shipments were destined for U.S. ports. The remaining 44 percent went to Canadian ports.
- 4. Cement. There were two docks that received cement during the 1989 navigation season. Total cement movements equaled f.,623 tons. Cement is a widely used building material used to e concrete. Cement is a vital industrial mineral necessary for the construction sector of the Great lakes economy. Cement markets are regional in scope and usually centered in developing urban areas or locations of major construction projects. The market area of a cement plant can be delineated by the amount of transportation costs that the selling price can absorb.

d. Shoaling Activity.

Transportation costs will increase if existing navigation channel depths decrease as a result of deferred maintenance. Estimates of shoaling rates were developed for the Outer Harbor as well as the Cuyahoga River and the Old River.

Project depths at various locations throughout the Outer Harbor were identified (Figures B1 and B2). Navigation routes taken by vessels to move bulk materials were determined based on origin/destination dock to dock data and commodities shipped/received for the 1989 navigation season. (See Table B2). Finally, the Outer Harbor, the Old River and the Cuyahoga River were divided into twenty-one sections. Shoaling rates were determined for each of these reaches. Unique shoaling rates applied to eleven of these sections. These harbor sections and their respective shoaling rates are presented in Figure B6 and Table B 4.

Based upon the sedimentation study, and the location of various docks that receive/ship bulk commodities, yearly shoaling rates were applied to the various navigation routes and thus commodities. A summary of shoaling rates by harbor reach, and the docks located in each of these reaches, is summarized in Table B4.

Figure B 6 Harbor Section Developed For Shoaling Analysis

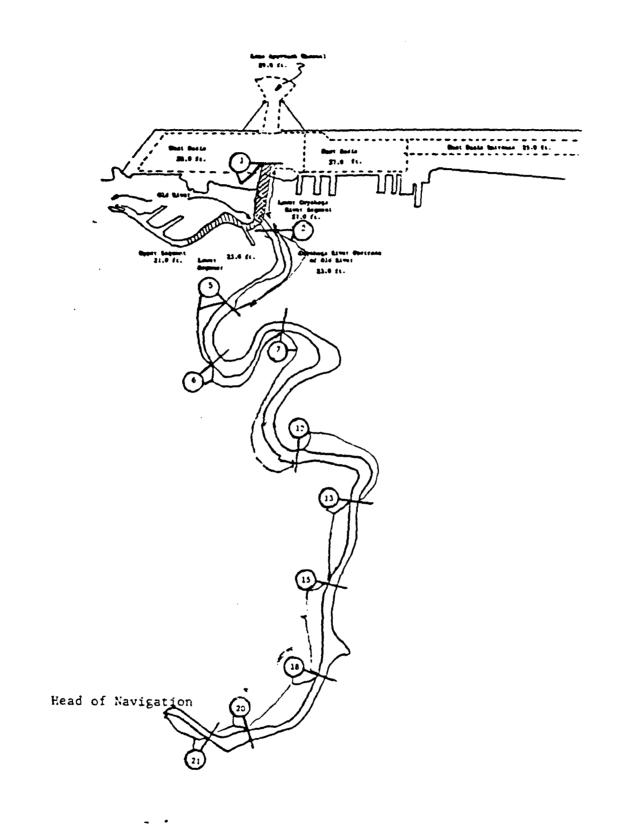


Table B 4-Yearly Shoaling Rate By Cleveland Harbor Reach And Starting Channel Depth

Reach		Yearly Shoaling Rate (feet)	Docks Affected	Starting Channel Depth (Ft)	Channel Depth (LWD)	Commodities Affected(1)
Reach	1	0.37	1-250,673,720	27, 23	541.6	1,2,3,4,
Reach	2	0.33		23	545.6	
Reach	5	0.34		23	545.6	
Reach	6	0.36		23	545.6	
Reach	7	0.39	598	23	545.6	2
Reach	12	0.44	329,580	23	545.6	2
Reach	13	0.53	360	23	545.6	2
Reach	15	0.59	378	23	545.6	2
Reach	18	0.70	410	23	545.6	1,2
Reach	20	1.06	435,440	23	545.6	1,2
Reach	21	2.25		23	545.6	

(1) 1= iron ore, 2= limestone, 3= salt, 4= cement

e. Origin/Destination Harbor Traffic Patterns, Iron Ore, Limestone, Salt and Cement.

The Great Lakes water levels fluctuate in the short and long run time frame. Short term fluctuations are due to weather. Strong sustained westerly winds, for example, can "pile" water at the eastern end of Lake Erie. This reduces water surface elevations in Lake Eries' western basin. The water oscillates in Lake Erie until the effect of the weather event has dissipated.

Long term water level fluctuations are generally due to subtle variations of climatic conditions over a period of years. Precipitation significantly above average levels will likely result in sustained increases in water surface elevations over time. However, precipitation significantly below average will likely result in sustained decreases in water elevations. effect of these variations on water surface elevation for any individual Great lake, or a combination of Great lakes, is that relative navigation channel depths vary. Commercial navigation Carriers effectively manage their vessel loadings to maximize the tonnage carried on each vessel trip. Maximum tonnage carried per vessel trip is a function of the location of the origin harbor, the location of the destination harbor and the available water surface elevations for that trade route. For example, say the trade route is within one lake: iron ore moving from Lorain Harbor, Ohio to Cleveland Harbor, Ohio. The fleet operators load vessels according to that days water surface elevation for Lake Erie levels, thus maximizing vessel efficiency. For example, if for that day water levels for Lake Erie are two feet above datum, fleet operators have two additional feet of draft they can utilize on their movement to Cleveland Harbor, Ohio.

Tables B5, B6, B7 and B8 shows the location, tons and distances from Cleveland Harbor for the origin/destination ports associated with iron ore, limestone, salt and cement movements for 1989. A brief description of these trade routes follows.

1. Iron Ore. There were 8,201,377 tons of iron-ore received at Cleveland Harbor in 1989. U.S. ports accounted for 6,637,636 tons, or 81 percent of the total. The remaining 19 percent was sourced from Canadian Harbors in the lower St. Lawrence River area.

Domestic iron ore sources include harbors along western Lake Superior and Escanaba, Michigan. Ships which load at Lake Superior harbors transit the Soo Locks while ore loaded at Escanaba, Michigan can navigate directly to Cleveland Harbor, Ohio. One advantage of a trade route not dependent upon locks is that vessels are not constrained by the elevation of lock sills and subsequent water depths in a lock. Thus vessels have the ability to fully utilize open lake water levels a greater percentage of the navigation season. All vessels in the iron ore trade were self-unloaders and included class 5, 6, 7, 8 and 10 vessels.

Canadian sourced iron ore comes from Montreal via the St. Lawrence and the Welland Canal via class 7 vessels. Receipts of iron ore from Canadian mines have risen in recent years. Many of the U.S. inland steel plants use Canadian ore for a variety of reasons: partial equity interests in the ore mines, management interests in the Great lakes fleets, contract requirements which are often "take or pay" in nature and favorable currency exchange rates between the two countries. Iron ore sourced from Canadian ports accounted for 19 percent of the iron ore received at Cleveland Harbor in 1989.

The majority of Cleveland Harbors' iron ore tonnage originating in Lake Superior harbors, is either delivered directly to Cleveland or is trans-shipped via Lorain Harbor Ohio. Lorain Harbor, Ohio is located 30 miles west of Cleveland Harbor, Ohio.

The transshipment operation uses class 10 vessels to carry the iron ore pellets from Lake Superior Harbors to Lorain Harbor. This iron ore is reloaded into smaller vessels which proceed down Lake Erie to Cleveland Ohio. Vessels that are designed to maximize carrying capacities on the winding Cuyahoga River are used in this transshipment operation. High Lake Erie water levels can be used advantageously to increase trip carrying capacity and decrease the delivered cost per ton. Authorized channels in the Cuyahoga River are 23 feet lwd, but vessels frequently overdraft by at least 1.5 feet when water levels and channel maintenance on the River are advantageous.

After entering the Outer Harbor, ore ships can proceed directly to a lakefront dock, "lighter at a lower Cuyahoga River transfer dock or navigate directly to the docks using iron ore on the Cuyahoga River. Estimated annual transportation costs have

Table B5- Origin Ports For Iron Ore -1989

Ports	Lake/ Location	Short Tons	Distance (Miles)
ACanadian Ports			
Sept Isles	Below Montreal	1,391,144	964
Port Colborne, Ont.	Lake Erie	56,501	160
B. U.S. Ports			
Presque Isle, Mich.	Lake Superior	128,455	598
Superior, Wis	Lake Superior	86,749	831
Two Harbors, Minn	Lake Superior	601,597	809
Lorain Harbor, Oh.	Lake Erie	5,724,868	28
Lake Erie Ont. dredge	Lake Erie	116,096	67
Sault St. Marie	Lake Superior	19,026	438
Tacpnite Harbor, Minn	•	76,941	771
	_		
		8.201.337	

Table B6- Origin Ports For Limestone -1989

Ports	Lake/ Location	Short Tons	Distance (Miles)
A. U.S. Ports			
Marblehead Ohio	Lake Erie	553,496	59
Stoneport Mich	Lake Huron	746,946	352
Calcite Mich.	Lake Huron	638,218	380
Port Dolomite, Mich.	Lake Huron	326,199	409
Drummond Isl. Mich.	Lake Huron	69,070	424
Port Inland, Mich.	Lake Michigan	333,631	476
		2,667,590	

Table B7- Destination Ports For Salt -1989

Ports	Lake/ Location	Short Tons	Distance (Miles)
A. Canadian Ports			
St Lawrence River	St. Law. & Below	126,966	534
Port Credit, Ont	Lake Ontario	20,924	
Toronto, Ont.	Lake Ontario	167,001	215
Lake Erie Ont. Dredge	Lake Erie	42,447	67
Thorold Ont.	Welland Canal	41,385	167
Foreign ports		20,928	534
		419,651	
B. U. S. Ports			
Ogdensburg Harbor	St Lawrence River	38,768	408
Toledo Oh.	Lake Erie	46,328	96
Erie Harbor, Pa.	Lake Erie	12,024	102
Dearborn Mi.	Detroit River	134,623	108
Detroit Mi.	Detroit River	28,274	108
Saginaw Mi.	Lake Huron	43,671	345
Muskegon Harbor, Mi.	Lake Michigan	13,504	640
Port Of Chicago	Lake Michigan	50,922	741
Lake Calumet, Ill.	Lake Michigan	60,923	742
Chicago Sanitary	Lake Michigan	13,013	741
Milwaukee, Wi.	Lake Michigan	54,497	676
Sheboygan, Wi.	Lake Michigan	15,926	629
Green Bay, Wis.	Lake Michigan	11,989	615
	- -	524,462	

Table B8- Origin Ports For Cement -1989

Ports	Lake/ Location	Short Tons	Distance (Miles)
A. Canadian Ports			
Bath Ont.	Lake Ontario	94,435	323
B. U. S. Ports			
Bayshore, Mich.	Lake Huron	289,708	326
Charlevoix, Mich.	Lake Michigan	121,480	473
		505,623	

been developed to reflect the range of possible water levels available for these vessels under "without" and "with project" conditions.

2. Limestone.-Limestone receipts have typically originated from domestic ports on Lake Huron. More than 72 percent of all limestone is loaded at Lake Huron ports for delivery via self-unloading ships (Class 5 vessels) to Cleveland Oh. The remaining 28 percent come from Lake Erie sources. Table B3 shows limestone shipments are almost equally distributed between the lower Cuyahoga/Old River and the Middle/Upper Cuyahoga river docks.

No limestone receipts have been recorded at the lakefront. Consequently, all limestone vessels move directly between the origin port and the destination dock. All limestone vessels entering the Old River and Cuyahoga River would have channels with a 23 foot channel depth lwd. Since shoaling is greater on the Upper Cuyahoga, deferred maintenance would have a much greater impact on those vessels which must navigate the entire length of the Cuyahoga River.

3. Salt- All salt shipments from Cleveland harbor originate from a dock located on the upper end of the Old River. The navigation channel in this area is maintained to 21 feet lwd. Vessels engaged in the salt trade ranged from class 3's to class 5's. An overwhelming majority of these vessels have mid summer drafts less than 23 feet.

Canadian destinations accounted for 38 percent of all salt shipments, while U.S. destinations accounted for 62 percent of all salt shipments from Cleveland Harbor. There were 13 different U.S. harbors involved in the salt trade in 1989. Two of these harbors are located on Lake Erie: Toledo Harbor, Ohio and Erie Harbor, Pa. Two other destinations are on the Detroit River (Detroit Michigan and Dearborn Mich.) One destination port is located on Lake Huron(Saginaw Mich). The remaining eight 1989 destination harbors are located on Lake Michigan.

4. Cement- Cement originating from two U.S. ports (Bayshore Mich. and Charlevoix Mich) accounted for over 89 percent of all cement receipts at Cleveland Harbor. Cement carriers are a specialized type of vessel which relies on shoreside equipment to unload the cargo. Only three vessels were active in the U.S. cement trade at Cleveland Harbor in 1989. These vessels ranged in size from a class 2 to a class 4. All of the receiving docks active in the cement trade during 1989 were located on the Old River/Lower Cuyahoga River.

f. Annual Transportation Costs.

Under the "without project" condition, shoaling would continue over the 50 year evaluation period until the Outer Harbor, Cuyahoga River and Old River channels reached equilibrium bottom profile elevations. Annual transportation costs were developed for iron ore for channel depths ranging from 27 to 15 feet below LWD. Annual transportation costs were developed for

limestone, salt and cement for channel depths ranging from 23 to 15 feet below LWD. Current commercial navigation industry practices within the Great Lakes/ St. Lawrence Seaway System are based upon utilization of available water depths and operation of bulk carriers at minimal underkeel clearances. In most instances, vessel operators maximize vessel physical carrying capacity for each trip in light of the available channel depths between specific harbor pairs and each trade route.

Channel depths, water level fluctuations and operating characteristics can vary significantly among the three upper Great Lakes, Lake Erie and Lake Ontario. The physical characteristics of the origin harbors, intermediate connecting channels and destination harbors for iron ore, limestone, salt and cement were examined for the 1989 transportation season. Also included was a determination of vessel sizes used to transport these commodities on the numerous transportation routes. Table B9 presents a summary of the 1989 navigation trade routes for iron ore. It also presents typical vessels, by vessel class, used to move iron ore during the 1989 navigation season. Tables B10, B11 and B12 present similar data except it reflects the limestone, salt and cement trade.

Transportation cost programs (Comnavl, Comnav2) have been developed which utilize channel depths, underkeel clearance, and variable water levels in estimating total transportation costs to move coal and iron ore from and to the Harbor. A range of physical and financial vessel operating characteristics are combined with individual trade routes to derive unit transportation costs by vessel class on a monthly basis. This cost is combined with monthly commodity tonnage movements to estimate transportation costs. Total annual transportation costs represent the summation of all individual months (April-December) of the navigation season.

Comnav 1 computes the transportation cost in dollars per ton for a range of operating drafts for a number of prototype vessels carrying a specific commodity on a specific trade route. Tables B13, B14, B15 and B16 present vessel characteristics for the prototype vessels used in the various trade routes. Table B17 presents the financial characteristics of the prototype vessels used by trade route, for iron ore, limestone, salt and cement. These financial characteristics reflect August 1991 price levels.

The Comnav 1 program first calculates the tonnage capacity of the prototype vessels for various operating drafts. Input needed for the program includes maximum mid summer operating draft, maximum load at mid-summer operating draft, and the immersion factor of the vessel. The immersion factor reflects the number of short tons the vessel can accommodate given one inch of water. The program calculates each individual ships' unique carrying capacity given the vessels draft. Next the program calculates the hourly vessel operating cost using the financial characteristics of the prototype vessels. The fixed cost is based on the construction cost, season length, amortization rate and profit factor. The variable cost is based on wages, supplies, fuel etc., plus an overhead factor.

Table B9- Iron Ore Receipts By Shipment Ports, Fleets-1989

Ports/Vessels	Vessel Class	Short Tons
ACanadian Ports Sept Isles	_	1,391,144
Algosoo Port Colborne, Ont.	7 7	56,501
Algosoo	,	
B. U.S. Ports		128,455
Presque Isle, Mich Buffalo	5	45 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
American Republic	5	
Charles E. Wilson	7	
American Mariner	7	
	•	86,749
Superior, Wis Fred R. White Jr.	5	
Indiana Harbor	10	
	10	601,597
Two Harbors, Minn John G. Munson	8	
Philip R. Clarke	8	
Prilip R. Clarke Presque Isle	10	
Lorain Harbor, Oh.	10	5,724,868
Richard J. Reiss	5	• (• • • • • • • • • • • • • • • • • •
	5	
Sam Laud Wolverine	5	
American Republic	5	
American Republic	•	116,096
Lake Erie Ont. Dredge	5	220,00
Sam Laud	3	19,026
Sault St. Marie Herbert C. Jackson	5	25,020
Herbert C. Jackson	3	76,941
Taconite Harbor, Mi	5	.0,512
Fred R. White Jr.	J	
		8,201,337

Table B10- Limestone Receipts By Shipment Ports, Fleets-1989

	Ports/Vessels	Vessel Class	Short Tons
A.	U.S. Ports		553,496
	Marblehead Ohio	5	303,03
	Richard J. Reiss	ວ	746,946
	Stoneport Mich	_	740,340
	Wolverine	5	
	William R. Roesch	5	
	Buffalo	5	
	American Republic	5	
	Calcite Mich.		638,218
	Paul Thayer	5	
	American Republic	5	
	- Calcite II	5 5	
	Buffalo	5	
		•	326,199
	Port Dolomite, Mich.	5	•
	J. Burton Ayers	5	
	Calcite II	5	
	Buffalo	3	69,070
	Drummond Isl. Mich.	5	05/075
	J. Burton Ayers	5	333,631
	Port Inland, Mich.		333,031
	Wolverine	5	
	Buffalo	5	
			2,667,590

Table B11- Salt Shipments By Receiving Port, Fleets-1989

		Vessel	Short
	Ports/Vessels	Class	Tons
A.	Canadian Ports		126,966
	St Lawrence River	-	120,900
	Myron C. Taylor	5	20,924
	Port Credit, Ont	5	20,324
	Myron C. Taylor	3	167,001
	Toronto, Ont.	5	107,001
	Myron C. Taylor	3	42,447
	Lake Erie Ont. Dredge	5	10,711
	Myron C. Taylor	J	41,385
	Thorold Ont.	5	12,000
	Myron C. Taylor	J	20,928
	Foreign ports Myron C. Taylor	5	20,020
	Myron C. Tayror	3	
			419,651
D	U. S. Ports		•
υ.	Ogdensburg Harbor		38,768
	Calcite II	5	
	Toledo Oh.		46,328
	Nicolet	3	
	Sam Laud	5	
	Erie Harbor, Pa.		12,024
	Nicolet	5	
	Dearborn Mi.		134,623
	Nicolet	3	
	Sam Laud	5	
	Detroit Mi.		28,274
	Nicolet	3	
	Sam Laud	5	
	Saginaw Mi.	_	43,671
	Nicolet	3	
	Sam Laud	5	10 504
	Muskegon Harbor, Mi.	_	13,504
	Calcite II	5	50.000
	Port Of Chicago		50,922
	Irvin L. Clymer	4	
	Calcite II	5	60.000
	Lake Calumet, Ill.		60,923
	Irvin L. Clymer	4	12 012
	Chicago Sanitary	•	13,013
	Irvin L. Clymer	4 5	
	Myron C. Taylor	5	54,497
	Milwaukee, Wi.	4	34,437
	Irvin L. Clymer	4 5	
	Calcite II	, ,	15,926
	Sheboygan, Wi.	4	15,320
	Irvin L. Clymer	7	11,989
	Green Bay, Wis.	4	11,505
	Irvin L. Clymer	-3	
			524,462
	_		,

Table B12- Cement Receipts By Shipment Ports, Fleets-1989

	Ports/Vessels	Vessel Class	Short Tons
A.	Canadian Ports		04 425
	Bath Ont. Sam Laud	5	94,435
в.	U. S. Ports		
	Bayshore, Mich.		289,708
	Paul H. Townsend	2	·
	J.A.W. Iglehart	3	
	Charlevoix, Mich.		121,480
	- Paul H. Townsend	2	•
	Medusa Challenger	4	
	•		
			505.623

Table B17.- Financial Characteristics Of Prototype Vessels

vessel class	2	3	4	5	6	7	8	16
CONSTRUCTION (\$M) (1)	\$27	\$29	\$32	\$34	\$40	\$43	\$50	\$7
AMORTIZATION RATE	0.08884	0.08884	0.08884	0.08884	0.08884	0.08884	0.06884	0.0688
ANNUAL FIXED COSTIVE	\$2,398,680	\$2,576,360	\$2,842,880	\$3,020.560	\$3,553,600	\$3,820,120	\$4,442,000	\$6,840,680
SEASON LENGTH (DAYS)	275	275	275	275	275	275	275	275
FIXED COST/DAY(S)	\$8,722	\$9,369	\$10,338	\$10.984	\$12,922	\$13,891	\$16,153	\$24,675
PROFIT FACTOR	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15
TOTAL DAILY FIXED COS	\$10.031	\$10,774	\$11,888	\$12.631	\$14,861	\$15,975	\$18,576	\$28,606
DAILY VARIABLE COST(\$)	\$12,722	\$13,803	\$15,869	\$16,255	\$16,972	\$17,238	\$18,084	\$22, 3 63
OVERHEAD FACTOR	1.12	1.12	1 12	1.12	1.12	1.12	1.12	1.12
OTAL DAILY VARIABLE C	\$14,249	\$15,459	\$17,773	\$18,206	\$19.009	\$19,307	\$20,254	\$25,047
AILY VESSEL COST (\$)	\$24,279	\$26,233	\$29,662	\$30,837	\$33,869	\$35,282	\$38,830	\$53,653

Table B 13- Iron Ore Trade Routes And Prototype Vessel Characteristics, Cleveland Harbor Ohio.

Table B 13- Iron Ore Trade Route And Prototype Vessel Characteristics, Cleveland Harbor, Ohio	3 Trac	de Rout	e And F	rototyp	e Vess	sel Char	acteri	stics, C	Seve	land F	larbor	Ohlo		
, TRADE ROUTE/ VESSEL PROTOTYPE	YEAR	YEAR VESSEL BUILT CLASS	VESSEL LENGTH (FEET)	SI VESSEL BEAM (FEET)	MID SUMMER L ESSEL I DRAFT) (FEET)	MID SUMMER VESSEL CAPCTY NET TONS	IMRS FCTR NET TONS PER INCH	HARBOR MANEUV TIME HOURS ORIG DES		LOADING L RATE SHORT TONS PER HOUR	UN LOADING RATE: SHORT TONS PER HOUR	AVERAGE VESSEL TIME I SPEED LOCK (MPH) (HRS	AVERAGE VESSEL TIME IN LOCK SPEED LOCK DEL (MPH) (HRS (HF	LOCK DELAY (HRS)
CANADIAN IRON ORE SEPT ISLES ALGOSOO	1974	7	730.0	75.0	29.0	35,100	133	-	-	3.000	8,000	12	12.0	6 .0
DOMESTIC IRON ORE PRESQUE ISLE, MICH. BUFFALO AMERICAN REPUBLIC	1978		634.8 634.9	68.0 68.0	28.0 28.3	26,700	106	- -		3,100	7,400	7.7	خ خ خ خ	0. 6 8. 6
CHARLES E. WILSON AMERICAN MARINER	1973	9 /	680.0 730.0	78.0		37,900 41,700				3,100	6,700	77	2.0	0.5
SUPERIOR, WIS FRED R. WHITE JR. INDIANA HARBOR	1979	\$ 01	636.0	68.0 105.0	27.9 34.0	26,700 88,300	106	**		3,200	7,400	4 4	2.5	0 8. 0
TWO HARBORS, MINN JOHN G. MUNSON PHILIP R. CLARKE PRESQUE ISLE	1952 1952 1973	ထေးဝိ	768.3 767.0 1000.0	72.0 70.0 104.7	27.3 27.0 28.6	28,900 29,700 64,400	130 127 127			3,200 3,200 3,200	5,600 6,700 11,200	2 2 2	2 2 2 8 0 0	0 0 0 0 0
LORAIN HARBOR, OH RICHARD J. REISS SAM LAUD WOLVERINE AMERICAN REPUBLIC	1943 1975 1974 1981	เกรา	620.6 634.8 630.0 634.9	60.3 68.0 68.0 68.0	24.6 28.0 26.0 26.0	16,700 26,700 22,000 26,000	85 102 0 102 0 108			5,000 5,000 5,000 5,000	5.600 7.400 7.400	4 4 4 4	2. 2. 2. 2. 2. 2.	0 8 8 8 8
SAULT ST. MARIE HERBERT C. JACKSON TACONITE HARBOR MINN	1959	v	690.2	75.0	7.72	27,800	122	-	-	3,200	6,700	7	2 .	0
FRED R. WHITE JR.	1979	S	636.0	68.0	27.9	26,700	106	-	-	3,200	7,400	7	1.5	0.5

Table B 14- Limestone Trade Routes And Prototype Vessel Characteristics, Cleveland Harbor Ohio.

Table B 14- Limeston	ne Tra	de Rou	le And F	rototy	pe Vess	el Char	acteris	stics, C	levela	e Trade Route And Prototype Vessel Characteristics, Cleveland Harbor, Ohio	0, 20	hio		[
					QIW	MID SUMMER	MAS	НАЯВОЯ	LOADING	UN ING LOADING E RATE:	9			
			,	i	SUMMER	VESSEL	NET	MANEUV	SHORT	۷,		AVERAGE		
TRADE BOUTE/	YFAR	VESSEI	VESSEL	VESSEL	VESSEL	CAPCITY FIGURE	S of	TIME	TONS	ds TONS			VESSEL TIME IN LOCK	X 2
VESSEL PROTOTYPE	BUILT	CLASS	(FEET)	(FEET)	(FEET)	TONS	INCH	ORIG DEST	_	*	-			(HRS)
STONEPORT MICH.														
WOLVERINE	1974	S	630.0	68.0	26.0	22,000	102	-	-	1,800 7,400	8	=	0.0	0.0
WILLIAM R. ROESCH	1973	45	630.0	68.0	26.0	22,000	101	-	2			ĭ	0.0	0,0
BUFFALO	1978	S	634.6	68.0	28.0	26,700	90	-	2			=	0.0	0.0
AMERICAN REPUBLIC	1961	S	634.9	68.0	28.3	26,000	<u>8</u>	~	3		7,400	=	0.0	0.0
PORT INLAND, MICH														
WOLVERINE	1974	S	630.0	68.0	9.09	22,000	102	-	-	1,800 7.4	7,400	=	0.0	0.0
BUFFALO	1978	S	634.8	68.0	28.0	26,700	5	-	~		7,400	=	0.0	0.0
CALCITE, MICH.														
PAUL THAYER	1973	νn	630.0	6.8.0	26.0	22,000	103	-	-	7.7 002.1	7.400	=	0.0	0.0
AMERICAN REPUBLIC	1961	S	634.9	0.89	28.3	26,000	8	_	3	7,7 007.1	7,400	=	0.0	0.0
CALCITE II	1973	S.	6.04.9	60.0	22.3	14,600	82	-	2	1,700 7.4		=	0.0	0.0
BUFFALO	1978	S	634.8	66.0	28.0	26,700	\$	-		7.7 007.1	7.400	2	0.0	0.0
PORT DOLOMITE, MICH.														
J BURTON AYERS	1974	Ś	620.0	90.0	\$3.5	17,400	8	-	-	3,200 7,4	7,400	=	0.0	0.0
CALCITE II	1973	s.	6.04.9	0.09	22.3	14,600	82	-	8		7,400	Ξ	0.0	0.0
BUFFALO	1978	S	634.8	68.0	28.0	26.700	9	-	7		7,400	<u>*</u>	0.0	0.0
DRUMMOND ISLAND, MICH.														
J BURTON AYERS	1974	\$	620.0	0.09	25.5	17,400	98	-	-	2,000 7,	7,400	=	0.0	0.0
MARBLEHEAD, OHIO RICHARD I REISS	į	•	8	9	7	9		•			1	;	9	
Division of the contract	26	,	2000	2.2		3/01	2	-	_	000.1	5,600	•	0.0	00

Table B 15- Salt Trade Routes And Prototype Vessel Characteristics, Cleveland Harbor Ohio.

Table B 15- Salt Tr	ade Ro	oute An	d Proto	type Ve	ssel Ch	aracteri	stics,	Cleve	land	Harbor	, Ohio			
					MID	MID SUMMER	IMRS FCTR	HARBO	A	RATE	UN LOADING RATE:			
					SUMMER	VESSEL	NET	MANEU	Y	SHORT	SHORT	AVERA	3E	
			VESSEL	VESSEL	VESSEL	CAPCTY	TONS	TIME		TONS	TONS	VESSEL		
TRADE ROUTE/	YEAR	VESSEL	LENGTH	BEAM	DRAFT	NET	PER	HOURS	S	PER	PER	SPEED		
VESSEL PROTOTYPE	BUILT	CLASS	(FEET)	(FEET)	(FEET)	TONS	INCH	ORIG	DEST	HOUR	HOUR	(MPH)	(HRS	(HRS
OGDENSBURG HARBOR, N	l. Y .													
CALCITE II	1973	5	604.9	60.0	22.3	14,600	82	1	1		7,400	12	80	6.
TOLEDO, OHIO														
NICOLET	1905	3	533.0	60.0	22.0	12.500	76	1	1		5,600	14	0 0	0.1
SAM LAUD	1975	5	€34.8	68 0	28 0	26,700	106	1	1		7,400	14	00	٥.
ERIE HARBOR, PA													0 0	0.
NICOLET	1905	3	533.0	60.0	22.0	12.500	76	1	1		5,600	14	0.0	0.
DEARBORNE, MICH.														
NICOLET	1905	3	533.0	60.0	22.0	12,500	76	1	1		5,600	14	0.0	Q.
SAM LAUD	1975	5	634.B	68.0	28.0	26.700	106	1	1		7,400	14	0.0	0.0
DETROIT MICH.													• •	
NICOLET	1905	3	533.0	60.0	22.0	12.500	76	1	1		5.600	14 14	00	0. 0.
SAM LAUD	1975	5	634.8	68.0	28 0	26,700	136	1	1		7,400	14	00	U.
SAGINAW, MICH		_					=-				5.600	14	0.0	٥.
NICOLET	1905	3	533.0	60.0	22.0	12.500	76 106	1	1		7.400	14	0.0	0.
SAM LAUD	1975	5	634.8	68.0	28.0	26,700	106	1	•		7,400		0.0	0.
MUSKEGON HARBOR, MICH	۹.													
CALCITE II	1973	5	604.9	60.0	22.3	14,600	82	1	1		7,400	14	00	0.0
PORT OF CHICAGO														
IRVIN L. CLYMER	1917	4	552.0	60.0	22.6	13,500	77	1	1		6,500	14	0.0	0.
CALCITE II	1973	5	604.9	60.0	22.3	14,600	82	1	1		7,400	14	0.0	Q.
AKE CALUMET, IL.								_						0
IRVIN L. CLYMER	1917	4	55 2.0	60.0	22.6	13.600	77	1	1		6.500	14	00	•
CHICAGO SANITARY		_			20.6						6,500	14	00	0 (
IRVIN L. CLYMER	1917	4	552.0	60.0 60.0	22.6 22.2	13.600 14,300	77 82	1	1		6,500	14	0.0	0
MYRON C. TAYLOR	1929	5	603.9	60.0	44.4	14,300	64	'	•		0.500			•
MILWAUKEE, WIS			***	60.0	22.6	13,500	77	1	1		6,500	14	0.0	0
IRVIN L. CLYMER	1917	4	552.0	60.0			82	1	1		7,400	14	0.0	0.0
CALCITE II	1973	5	604.9	60.0	22.3	14,600	64	,	•		.,		•.•	•
SHEBOYGAN, WIS			***	60.0	22.5	13.600	77	1	1		6,500	14	0 C	0
IRVIN L. CLYMER	1917	4	552.0	60.0	22 6	13.600	"	'	•		0,500		• •	•
REENBAY, WIS								_			£ 500	14	0.0	0 1
IRVIN L CLYMER	1917	4	552 0	60.0	22 6	13.600	77	1	1		6,500			~

Table B 16- Cement Trade Rolles And Prototype Vessel Characteristics, Cleveland Harbor Ohio.

N LOCK DELAY (HRS)	6	0.0	0.0
E TIME ! (HRS	12.0	0.0	0.0 0.0
	5	22	4 2
UN LOADING RATE: SHORT TONS PER HOUR	7,400	1,000,1 000,1	1,000
AATE SHORT TONS PER HOUR	006	2,500	1,400
) DEST	-		***
HARBOR MANEUV TIME HOURS ORIG I	-	~ ~	
IMAS FCTR NET TONS PER	106	45	45
MID SUMMER VESSEL CAPCTY NET TONS	26,700	8,800	8,800 11,500
MID SUMMER VESSEL DRAFT (FEET)	28.0	22.1 27.3	22.1 21.8
VESSEL BEAM (FEET)	68.0	50.0 68.3	50.0 56.0
VESSEL LENGTH (FEET)	634.8	447.0 501.6	447.0 552.1
VESSEL	ın	N 60	<i>6</i> 7 →
YEAR	1975	1945 1936	1945 1906
_	ADIAN & FORE O	NESTIC ICH. DWNSEND EHART	RLEVOIX, MICH. PAUL H. TOWNSEND MEDUSA CHALLENGER
TAADE ROUTE/ VESSEL PROTO	RECEIPTS-CAN BATH, ONTAR! SAM LAUD	RECEIPTS-DON BAYSHORE, M PAUL H. TC J.A.W. IGLE	CHARLEVOIX, MICH. PAUL H. TOWNSEND MEDUSA CHALLENGE
	MID IMAS LOADING SHORT SHORT A VESSEL VESSEL VESSEL CAPCTY TONS TIME TONS TONS TONS TONS TONS TONS YEAR VESSEL LENGTH BEAM DRAFT NET PER HOURS PER PER 17 TONS INCH ORIG DEST HOUR HOUR	MID SUMMER FCTR HARBOR RATE: SUMMER FCTR HARBOR RATE: SUMMER VESSEL NET MANEUV SHORT CLASS (FEET) (FEET) TONS INCH ORIG DEST HOUR HOUR HOUR HOUR 1975 5 634.8 68.0 28.0 26,700 106 1 1 900 7,400	NI

Comnav 1 then calculates the total transit time by using physical characteristics of the vessel plus the sailing distance between the origin/destination harbors. The total transit time at a given operating draft is multiplied by the hourly vessel operating cost to yield the transportation cost. This cost is divided by the number of tons carried at a given operating draft to arrive at the transportation cost per ton.

The second program, Comnav2, combines information on depths, drafts, and underkeel clearances for the origin harbor, destination harbor and connecting channels. It also incorporates stage-duration-frequency curves to derive a weighted annual vessel operating draft. This draft is identified with the unit-cost per ton matrix developed previously, and multiplied by the tonnage allocation for that month, vessel and forecast interval to calculate transportation costs.

Comnav 2 uses historical lake level elevations and stage frequencies for a variety of nodes (Duluth, Vidal Shoals, Livingstone Channel, Michigan/Huron, Ashtabula Harbor) to establish draft frequencies. Each point within the trade route is uniquely represented within the transportation cost model. Stage-duration frequency curves are transformed, after identification of an average channel bottom elevation and a representative underkeel clearance, into draft-frequency relationships.

For example, all locations below Lake Superior are combined into a composite draft-frequency curve and each point of the origin harbor draft-frequency curve is related to a range of points (ie. drafts) along the composite draft frequency curve. The program then uses the draft-frequencies and the Coast Guard load limits to establish the effective draft by determining the constraining points on the system by month. The program then uses the effective draft to read the tonnage capacity off the draft tonnage capacity curve. It also uses the effective draft to read the cost per ton off the draft/cost per ton matrix Table developed by Comnavl. The cost per ton is then multiplied by the monthly tonnage allocated by vessel size, and aggregated by month to arrive at total annual transportation costs.

Transportation costs were derived by trade route, for a specific fleet mix. Channel depths along the trade route at various critical points (See Figure B7) were used in conjunction with channel depths at the origin and destination ports. A range of alternative channel depths were identified and expected annual transportation costs were calculated for each major commodity flow and dock location for iron ore, limestone, salt and cement. Tables B 18, B 19, B 20 and B 21 provide annual transportation costs by channel depth for the iron ore, limestone, salt and cement trade routes.

Table B 18-Transportation Costs By Harbor Location By Channel Depth- Iron Ore

A.- OUTER HARBOR:

						IRON
	0 R 1	G 1 N	HARB	ORS		ORE
						TRANS
MAINTAINED						COSTS
CHANNEL	SUPERIOR	PRESQUE	TWO	CANADIAN	TWO	OUTER
CEPTH	HARBOR	ISLE	HARBORS	ORE	HARBORS	HARBOR
(FEET)	(\$000)	(\$000)	(\$000)	(\$000)	(\$000)	(\$000)
-						
27.0	475.0	508.0	2113.0	14070,0	941.0	18107.0
26.0	479.0	512.0	2127.0	14462.0	947.0	18527.0
25.0	489.0	522.0	2170.0	15080.0	964.0	19225.0
24.0	508.0	541.0	2252.0	15838.0	9 97.0	20136.0
23.0	534.0	567.0	2364.0	16707.0	1042.0	21214.0
22.0	564.0	596.0	2496.0	17085.0	1094.0	22435.0
21.0	598.0	631.0	2650.0	18797.0	1154.0	23830.0
20.0	638.0	670.0	2826.0	20074.0	1222.0	25430.0
19.0	684.0	715.0	3033.0	21540.0	1301.0	27273.0
18.0	737. 0	767.0	3278.0	23262.0	1393.0	29437.0
17.0	801.0	830.0	3572.0	25304.0	1500.0	32007.0

B.- LOWER RIVER DOCKS

				IRON
				ORE
				TRANSPORTATION
	ORIG	IN HA	RBORS	COSTS
MAINTAINED				LOWER
CHANNEL	LORAIN S	AULT ST	LORAIN	RIVER
DEPTH	HARBOR	MARIE	HARBOR	DOCKS
(FEET)	(\$000)	(\$000)	(\$000)	(\$000)
23.0	14.0	82.0	435.0	531.0
22.0	14.0	83.0	450.0	547.0
21.0	14.0	86.0	466.0	566.0
20.0	15.0	90.0	487.0	592.0
19.0	16.0	97.0	508.0	621.0
18.0	16.0	105.0	532.0	653.0
17.0	17.0	116.0	565.0	698.0
16.0	19.0	128.0	604.0	751.0
15.0	20.0	145.0	653.0	818.0

Table B 18-Iron Ore-CONTINUED

C. UPPER RIVER DOCKS WITH .7 FEET OF SHOALING PER YEAR-

	ORIGIN	
	HARBOR	UPPER
MAINTAINED		RIVER
CHANNEL	LORAIN	TRANS
DEPTH	HARBOR	COSTS
(FEET)	(\$000)	(\$000)
23.0	326.0	326.0
22.0	339.0	339.0
21.0	353.0	353.0
20.0	368.0	368.0
19.0	386.0	386.0
18.0	409.0	409.0
17.0	436.0	436.0
16.0	470.0	470.0
15.0	511.0	511.0

D.-UPPER RIVER DOCKS WITH 1.06 FEET OF SHOALING PER YEAR

ORIGIN HARBORS

MAINTAINED			UPRIVER
CHANNEL	TACONITE	LORAIN	TRANS
DEPTH	HARBOR	HARBOR	COSTS
(FEET)	(\$000)	(\$000)	(\$000)
23.0	579.0	4612.0	5191.0
22.0	613.0	4786.0	5399.0
21.0	651.0	4983.0	5634.0
20.0	695.0	5210.0	5905.0
19.0	745.0	5437.0	6182.0
18.0	805.0	5802.0	6607.0
17.0	875.0	6188.0	7063.0
16.0	959.0	6672.0	7631.0
15.0	1063 0	7251 N	8314 0

Table B 19-Transportation Costs Ey Harbor Location By Channel Depth- Limestone

1. LOWER RIVER DOCKS- WITH .37 FEET OF SHOALING PER YEAR

TONS (1,177,193) (244,215)

ORIGIN PORTS

STONEPORT PORT INLAND **TRANS** MAINTAINED CALCITE COSTS CHANNEL PRT DOLOMITE LOWER DEPTH DRMD IS. MRBLHEAD RIVER (\$000) (FEET) (\$000) (\$000) 23.0 5,771 491 6,262.0 22.0 6,086 495 6,581.0 21.0 6,466 505 6,971.0 20.0 6,912 521 7,433.0 19.0 7,432 543 7,975.0 8,057 18.0 570 8,627.0 17.0 8,815 601 9,416.0 16.0 9,754 640 10,394.0 15.0 10,946 691 11,637.0

2. MIDDLE RIVER DOCKS- WITH .44 FEET OF SHOALING PER YEAR

TONS 281,019 76,724 ORIGIN **PORTS** TRANS MAINTAINED COSTS CHANNEL STONEPORT MIDDLE DEPTH MRBLHEAD CALCITE RIVER (FEET) (\$000) (\$000) (\$000) 23,0 572.0 347.0 919.0 22.0 579.0 366.0 945.0 21.0 592.0 387.0 979.0 20.0 613.0 412.0 1,025.0 19.0 640.0 441.0 1,081.0 18.0 674.0 476.0 1,150.0 17.0 713.0 518.0 1,231.0 16.0 763.0 1,333.0 570.0 15.0 827.0 635.0 1,462.0

Table B 19-Limestone, Continued

3. MIDDLE RIVER - DOCKS WITH .53 FEET OF SHOALING PER YEAR

TONS	44,759	
	ORIGIN	
	PORTS	TRANS
MAINTAINED		COSTS
CHANNEL	CALCITE	MIDDLE
DEPTH	PORT DOLOMITE	RIVER
•	(\$000)	(\$000)
23.0	279.0	279.0
22.0	280.0	280.0
21.0	284.0	284.0
20.0	295.0	295.0
19.0	313.0	313.0
18.0	337.0	337.0
17.0	366.0	366.0
16.0	402.0	402.0
15.0	446.0	446.0

4. MIDDLE RIVER - DOCKS WITH .59 FEET OF SHOALING PER YEAR

TONS	28,362	
	·	TRANS
MAINTAINED		COSTS
CHANNEL		MIDDLE
DEPTH	MARBLEHEAD	RIVER
	(\$000)	(\$000)
23.0	58.0	58.0
22.0	58.0	58.0
21.0	60.0	60.0
20.0	62.0	62.0
19.0	65.0	65.0
18.0	68.0	68.0
17.0	72.0	72.0
16.0	77.0	77.0
15.0	83.0	83.0

Table B 19-Limestone, Continued

5. MIDDLE RIVER - DOCKS WITH .39 FEET OF SHOALING PER YEAR

TONS	399,755	
		TRANS
MAINTAINED	STONEPORT	COSTS
CHANNEL	PORT DOLOMITE	MIDDLE
DEPTH	PORT INLAND	RIVER
(FEET)	(\$000)	(\$000)
23.0	1,965.0	1,965.0
22.0	2,048.0	2,048.0
21.0	2,156.0	2,156.0
20.0	2,285.0	2,285.0
19.0	2,436.0	2,436.0
18.0	2,616.0	2,616.0
- 17.0	2,827.0	2,827.0
16.0	3,082.0	3,082.0
15.0	3,395.0	3,395.0

6. UPPER RIVER DOCKS WITH .7 FEET OF SHOALING PER YEAR

TONS	49,584
MAINTAINED	STONEPORT
CHANNEL	CALCITE
DEPTH	DRMND IS
(FEET)	(\$000)
23.0	236.0
22.0	248.0
21.0	263.0
20.0	280.0
19.0	300.0
18.0	324.0
17.0	353.0
16.0	389.0
15.0	433.0

7. UPPER RIVER DOCKS WITH 1.06 FEET OF SHOALING PER YEAR

TONS 366,€

MAINTAINED			UPRIVER
CHANNEL	STONEPORT	&	TRANS
DEPTH	CALCITE		COSTS
(FEET)	(\$000)		(\$000)
23.0	1,641.0		1,641.0
22 0	1,727.0		1,727.0
21.0	1,828.0		1,828.0
20.0	1,944.0		1,944.0
19.0	2,079.0		2,079.0
18.0	2,240.0		2,240.0
17.0	2,434.0		2,434.0
16.0	2,672.0		2,672.0
15.0	2,971.0		2,971.0

Table B 20-Transportation Costs By Harbor Location By Channel Depth- Canadian Salt

1. OLD RIVER DOCK WITH .37 FEET OF SHOALING PER YEAR- CANADIAN LAKE ERIE PORTS

	CANADIAN	
	LAKE	TRANS
MAINTAINED	ERIE	COSTS
CHANNEL	RECEIVING	OLD
DEPTH	PORTS	RIVER
(FEET)	(\$000)	(\$000)
21.0	91	91.0
20.0	93	93.0
19.0	96	96.0
18.0	100	100.0
17.0	104	104.0
16.0	110	110.0
15.0	117	117.0

2. OLD RIVER DOCK-.37 FEET SHOALING PER YEAR-CANADIAN LAKE ONTARIO PORTS

	CANADIAN	
	LAKE	TRANS
MAINTAINED	ONTARIO	COSTS
CHANNEL	RECEIVING	OLD
DEPTH	PORTS	RIVER
	(\$000)	(\$000)
21.0	1,299	1,299.0
20.0	1,341	1,341.0
19.0	1,413	1,413.0
18.0	1,512	1,512.0
17.0	1,633	1,633.0
16.0	1,781	1,781.0
15.0	1,966	1,966.0

3. OLD RIVER DOCK-.37 FEET SHOALING PER YEAR-CANADIAN ST. LAWRENCE

	CANADIAN	TRANS
MAINTAINED	ST LAWRENCE	COSTS
CHANNEL	RECEIVING	OLD
DEPTH	PORTS	RIVER
(FEET)	(\$000)	(\$000)
21.0	1,418	1,418.0
20.0	1,470	1,470.0
19.0	1,558	1,558.0
18.0	1,679	1,679.0
17.0	1,827	1,827.0
16.0	2,008	2,008.0
15.0	2,233	2,233.0

Table B 20-Transportation Costs By Channel Depth-continued

4. OLD RIVER DOCK- .37 FEET SHOALING PER YEAR- TO U.S. LAKE MICHIGAN PORTS

MUSKEGON, PRT OF CHICAGO, LAKE CALUMET, CHICAGO SANITARY, MILWAUKEE WIS., SHEBOYGAN, GREENBAY

	LAKE	TRANS
MAINTAINED	MICHIGAN	COSTS
CHANNEL	RECEIVING	OLD
DEPTH	PORTS	RIVER
	(\$000)	(\$000)
21.0	1,879	1,879.0
20.0	1,931	1,931.0
19.0	2,035	2,035.0
18.0	2,179	2,179.0
17.0	2,356	2,356.0
16.0	2,572	2,572.0
15.0	2,837	2,837.0

5. OLD RIVER DOCK-.37 FEET SHOALING PER YEAR-TO U.S. LAKE HURON PORTS

	LAKE	TRANS
MAINTAINED	HURON	COSTS
CHANNEL	RECEIVING	OLD
DEPTH	PORTS	RIVER
(FEET)	(\$000)	(\$000)
21.0	178	178.0
20.0	183	183.0
19.0	191	191.0
18.0	202	202.0
17.0	216	216.0
16.0	233	233.0
15.0	253	253.0

6. OLD RIVER DOCK- .37 FEET SHOALING PER YEAR- TO U.S. PORTS ON THE DETROIT RIVER

	RECEIVING	TRANS
MAINTAINED	PORTS ON	COSTS
CHANNEL	THE DETROIT	OLD
DEPTH	RIVER	RIVER
(FEET)	(\$000)	(\$000)
21.0	360	360.0
20.0	367	367.0
19.0	378	378.0
18.0	394	394.0
17.0	412	412.0
16.0	435	435.0
15.0	463	463.0

Table B 20-Transportation Costs By Channel Depth-continued

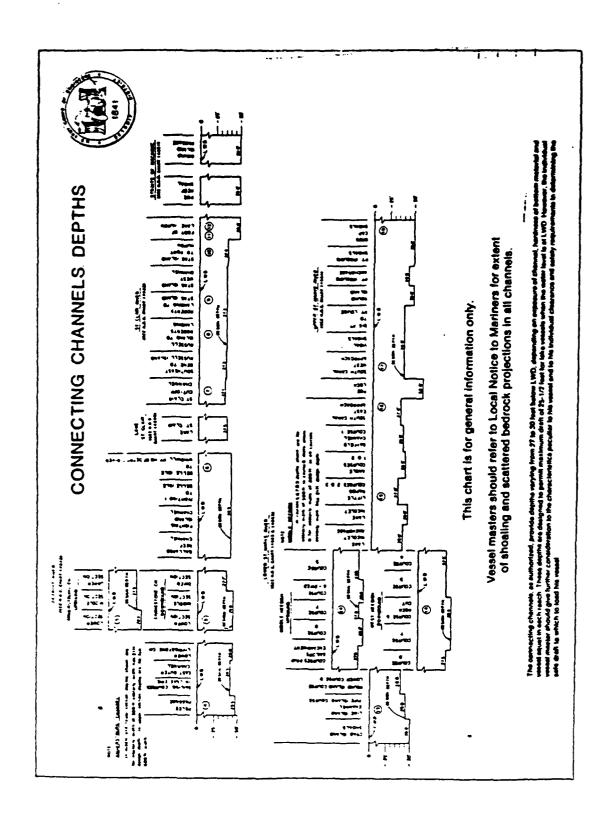
7. OLD RIVER DOCK- .37 FEET SHOALING PER YEAR- TO U.S. LAKE ERIE PORTS- TOLEDO, ERIE HARBOR RECEIVING

	PORTS	
		TRANS
	TOLEDO	COSTS
CHANNEL	ERIE	OLD
DEPTH	HARBOR	RIVER
	(\$000)	(\$000)
21.0	125	125.0
20.0	128	128.0
19.0	132	132.0
18.0	138	138.0
17.0	145	145.0
16.0	153	153.0
15.0	164	164.0

8. OLD RIVER DOCK- .37 FEET SHOALING PER YEAR- TO U.S. PORTS ON THE ST. LAWRENCE

		TRANS
		COSTS
CHANNEL	SALT	OLD
DEPTH	DOCK	RIVER
	(\$000)	(\$000)
21.0	309	309.0
20.0	321	321.0
19.0	339	339.0
18.0	364	364.0
17.0	395	395.0
16.0	432	432.0
15.0	478	478.0

Table B 21-Transportation Costs By Channel Depth- Cement


1. OLD RIVER/CUYAHOGA RIVER DOCKS- .37 FEET SHOALING PER YEAR - LAKES MICH/HURON SHIPMENT PORTS

TONS	411,188	TOTAL
	·	TRANS
MAINTAINED	LAKES	COSTS
CHANNEL	MICHIGAN	LOWER
DEPTH	& HURON	RIVER
	(\$000)	(\$000)
23.0	2,525	2,525.0
22.0	2,556	2,556.0
21.0	2,620	2,620.0
20.0	2,733	2,733.0
19.0	2,902	2,902.0
18.0	3,123	3,123.0
17.0	3,400	3,400.0
16.0	3,754	3,754.0
15.0	4,224	4,224.0

2. OLD RIVER/CUYAHOGA RIVER DOCKS- .37 FEET SHOALING PER YEAR - CANADIAN LAKE ONTARIO SHIPMENT PORTS

TONS	94,435	TRANS
	·	COSTS
CHANNEL	LAKE	LOWER
DEPTH	ONTARIO	RIVER
	(\$000)	(\$000)
23.0	488	488.0
22.0	510	510.0
21.0	534	534.0
20.0	562	562.0
19.0	594	594.0
18.0	632	632.0
17.0	677	677.0
16.0	731	731.0
15.0	797	797.0

Figure 7. Connecting Channels And St. Lawrence River Water Levels And Depths

g. <u>Time Stream Of Annual Transportation Costs: Iron Ore, Limestone, Salt And Cement.</u>

The data in Tables B 18, B 19, B 20 and B 21 were used in conjunction with the location of the docks that receive/ship any of the four major bulk commodities as well as the shoaling rates associated with the navigation channels leading to these docks. The combination of this data was used to identify the point in time when these transportation costs would accrue to each commodity based on that commodities dock location. navigation channel servicing Outer Harbor iron ore movements was assumed to shoal at .37 feet per year. The navigation channel servicing upriver iron ore and limestone movements had a shoaling rate that varied from .37 feet per year to 1.06 feet per year. The navigation channel servicing salt movements had a shoaling rate of .33 feet per year. The navigation channel servicing cement movements had a shoaling rate of .37 feet per year. time stream of annual transportation costs under the "Without" and "With Project" conditions for iron ore, limestone, salt and cement are presented in Tables B22, B23, B24 and B25.

B3. BENEFIT EVALUATION

a. Introduction.

The major benefit category for this project is transportation costs avoided. The benefit evaluation focused on the impact on transportation costs associated with iron ore, limestone, salt and cement under "without" and "with project" conditions. Transportation costs associated with sand and gravel are also impacted. However, the impact on the transportation costs associated with this commodity was not evaluated at this time. The derivation of transportation costs avoided associated with these four major bulk commodities follows.

b. Average Annual Transportation Costs Avoided

The time stream of annual transportation costs presented in Tables B22, B23, B24 and B25 were converted to present worth values given an 8.50 percent annual interest rate. These present worth values were then converted to average annual transportation costs using a 50 year evaluation period and an 8.50 percent annual interest rate. This data is presented in Tables B22, B23, B24 and B25 for iron ore, limestone, salt and cement under "without" and "with project" conditions.

Table B 22A-Annual Transportation Costs - Outer Harbor Iron Ore

u it t	WALT FRO.	JECT COMDI	710m (400	0)		WITE	PROJECT C	most (on	(8000)
		CLITER					E JTER		
	(III)	WARRON	PRESENT	PRESENT		LUD		MEREN	
PROJECT	CHANNEL	TRAIS	MALL	MORTH	PROJECT		TRAIS	MONTH	MORTH
YEAR	BEPTH	COSTS	FACTOR	WALLE	TEAR	DEPTH	COSTS	SACTOR	MALUE
					<u> </u>				
1	27.0	16107.0		14488.5	1	27.0	-		16,488.5
2	24.4	16275.0		15523.8	2	27.0	-		15,301.1
3	26.3	18401.0		14406.3	3	27.0			14,176.1
4	2.1		0.72157		4	27.0	•	0.72157	•
5	8.5	18876.0		12553.4	5	27.6	- •	9.44505	12,642.0 11,996.6
•	3.1	19155.2		11741.1	4	27.0	-	9.61295	-
7	24.8	19407.2		10943.6	7	27.0	-	0.54493	9,427.8
•	24.4	19771.6			•	27.0	-	0.52067 0.47988	8,689.2
- •				9642.9	•	27.0	-	0.44229	8,008.5
10	23.7			9048.9	10	27.0		0.40764	7,361.1
11			0.40764	8515.8	11	27.0	-		6,802.8
12		21336.1		8016.0	12	27.0	•	0.37570	6,269.9
. 13		21702.4		7514.9	13 14	27.0	-	0.31914	5,778.7
14		22190.8		7082.0		27.0	-	0.29414	5,324.0
15		22714.0		4681.1	15.	27.0	•		•
16		23272.0		4309.0	16	26.6	-	0.27110	4,954.3 4,597.6
17		23490.5		5919.3	17 18	26.3			4,262.6
18	20. *	24310.0 24950.0		5596.2 5295.5	19	25.9 25.5	-	0.23028	4,006.3
19						25.1	-	0.19562	3,747.1
20		25430 0		4974.5 :717.7	20 21	24.8		0.18029	3,499.0
21		26167.2		4470.6	22	24.4	-	0.16617	3,285.4
22				4176.9	25	24.0	•	0.15315	3.083.8
25		27273.0		3849.6	24	23.7	_	0.14115	2,867.9
24		27273.0 27273.0		3548.0	25	23.3		0.13009	2,717.7
25 26	19.0	27273.0		3270.1	26	22.9		0.11990	2,558.2
26 27	19.0	27273.0		3013.9	27	22.6	-	0.11051	2,398.3
21	19.0			2777.8	25	22.2		6.10185	2,260.2
29		27273.0		2560.2	29	21.8		0.09387	2,132.2
30		27273.0		2359.6	30	21.4	-	0.05652	2,013.5
31		27273.0		2174.8	31	21.1	23,471		1,869.1
32		27273.0		2004.4	32	20.7	24,310		1,786.6
33		27273.0		1847.4	ž	20.3	24,950		1,690.0
34 34	19.0	27273.0		1702.4	34	20.0	25,430		1,587.6
35		27273.0		1569.2	35	19.6	26,167		1,505.6
36	19.0		0.05303	1446.3	36	19.2	26.904		1,426.8
37			0.04868	1333.0	37	19.0	27,273	•	1,333.0
38	19.0	27273.0		1228.6	38	19.0	27,273		1,228.6
39			0.04152	1132.3	39	19.0		0.04152	1,132.3
40		27273.0		1043.6	40	19.0	-	0.03827	1,043.6
41		27273.0		961.9	41	19.0	27,273		961.9
42			0.03251	886.5	42	19.0	27,273		886.5
43		27273.0		817.1	43		27,273		817.1
44		27273.0		753.1	44		27,273		
45		27273.0			45		27,273		
46		27273.0			46		27,273		
47		27273.0			47		27,273		
48		27273.0			46	19.0		0.01992	
49		27273.0			49		27,273		500.8
50		27273.0		461.6	50		27,273		461.6
,.					~				
•	-	SENT WORT	us 2	47282.4				3	20,259.7
		ATMENT FAC		0.08646				•	9.08646
•			-	•••••					******
	VERACE AL	MAL VALU	Æ	21380.9					19.044.4
_									

Table B 22B-Annual Transportation Costs - Lower Cuyahoga Iron Ore

MIT	NOM THE	CT COMP	171 cm (8 0	90)		MITH		COMO 1710H	(1000)
4.1.		LOVER					LOVE		
	LIM	BIVER	PRESENT	PRESENT		LVD		PRESENT	MERTE
PROJECT	CHAMMEL	TRAIS	MORTH	MORTH	PROJECT		TRAFE	PACTOR	WALLE
YEAR	BEPTH	00678	PACTOR	MATTLE	TEAR	SEFTE	CD618	-	
					•	23.0	551.0	0.92144	480.4
1	23.0		0.92144	489.4	1 2	ت. ت.ه		0.04944	451.1
2	22.6		0.84946	456.5	3	25.0	531.0		415.7
3	22.3		0.78291	424.5 394.1	i	25.0		4.72157	343.2
4	21.9		0.72157	370.1	5	25.0		0.44505	353.1
5	21.5	400-0	0.44505	345.8	4	25.0	531.0	0.41295	325.5
6	21.1	\$44.1	0.56493	322.7	7	25.0	531.0	0.54493	300.0
7	20.8		0.52067	302.8		5.0		0.52067	274.5
- 1	20.4 20.0		0.47968	284.1	•	23.0		0.47966	254.6
10	19.7		0.44229	245.7	10	23.0	531.0	0.44229	234.9
11	19.3	612.3	0.40744	249.4	31	23.0		0.40744	216.5
- 12	18.9		0.37570	234.5	12	23.0		0.37570	199.5
	18.6		0.34427	219.5	13	23.0		0.34627	183.9
. 13	18.2			206.4	14	Z\$.0		0.31914	169.5
15	17.6	42.0	0.29414	194.7	15	Z3.0		0.29414	156.2
16	17.4	480.0	0.27110	184.3	16	22.6		0.27110	145.7 135.5
17	17.1	693.5	0.24986	173.3	17	22.3		0.24986	126.4
18	16.7	713.9	6.23028	164.4	18	21.9		0.21224	118.1
19	16.3	735.1	0.21224		19	21.5		0.19562	110.3
20	16.0	751.0			20	21.1		0.18029	103.0
21	15.6	777.8		_	21	20.5		0.16617	96.6
22	15.2	804.6			22	20.4 20.0		0.15315	90.7
캥	15.0	818.0			23 24	19.7		0.14115	84.8
24	15.0	418.0			2	19,3		0.13009	79.7
ಶ	15.0	418.0			24 24			0.11990	74.8
26	15.0	818.0			27			0.11051	70.0
27		818.0			28			0.10185	65.9
28		818.0			29		662.0		62.1
29	15.0	418.0			30		680.0	0.08652	58.8
30		818.0			31		693.5		55.3
31	15.0	\$18.0			32		713.9	0.07349	52.5
22		818.0			33		735.1	0.06774	49.8
33		818.0 818.0			34		751.0	0.06243	46.9
34		818.0			35		777.8	0.05754	44.8
35		818.0			36	15.2	804.6	0.05303	42.7
36 37		818.0			37	15.0	818.0	0.04656	
3/ 38		818.0			36	15.0	418.0		
36		818.0			39	15.0			
40		618.0			4.0	15.0			
41		£16.0			41				
42		818.6			43				
43		818.0	0.0299	5 24.5	43			0.02996	
44		818.0	0.0276	22.6	ų.			0.02761	
45		818.0	0.0254	5 20.8	45			0.02545	
46		818.6	0.0234	5 19.2	44			0.02349	
47		818.	0.0216		47			0.02162	
4	15.0	818.	0.0199		!!			0.01992	
49	15.0		0.0183		45			0 0.01834 0 0.01692	
50	15.0	618.	0.0169		51	15.0	814	U U.U1074	
									6,471,4
	MUN OF F			7,297.4					0.08646
	PARTIAL	PAYMENT	FACTOR	0.05446					*****
									559.5
	AVERAGE	AMELIAL !	VALUE	431.0					

Table B 22C-Annual Transportation Costs - Upper Cuyahoga Iron Ore: Docks With .7 Feet Of Shoaling Per Year

		~ ~~	710m (800)	33	-	#11# P	DECT G	DED 1710H	(2000)
	MD ABAES			PRESENT		UD UPPE	S SINES		PRESENT
		TRAIS	MORTH	WORTH	PROJECT	CHAMEL	TRANS	MERTH	MCRTH
PROJECT	DEPTH	COSTS	FACTOR	WALLE	YEAR	DEPTH	COSTS	PACTOR	WILLE
TEAR	967 14								200 E
1	23.0	324.0	8.92166	300.5	1	25.0		0.92166	300.5
ż	22.3		6.64946	24.7	2	23.0		2,8494.6	276.9 255.2
3	21.4	344.6		269.8	3	23.0		0.76291	
	20.9	-	0.72157	255.8	4	23.0		0.72157	235.2
5	20.2	_	8,66505	242.7	5	23.0	-	0.44505	214.8 199.8
	19.5	377.0	_	231.1	4	23.0		0.41295	184.2
7	18.8		0.56493	220.7	7	23.0		0.56493	169.7
i	18.1		0.52067	211.8		25.0		0.52067	156.4
,	17.4	425.2	0.47968	204.0	9	23.0		9,47968	144.2
10	16.7	446.2	0.44229	197.3	10	23.0		0.44229	132.9
11	16.0	470.0	0.40764	191.6	11	23.0		0.40744	122.5
12	15.3	496.7	0.37570	187.4	12	23.0		0.37570	112.9
. 13	15.0		0.34627	176.9	13	23.0		0.34627 0.31914	104.0
14	15.0	511.0	0.31914	163.1	14	23.0		0.29414	95.9
15	15.0		0.29414	150.3	15	23.0		9.27110	90.8
16	15.0	511.0	0.27110	138.5	16				86.1
17	15.0	511.0	0.24986	127.7	17			0.24986 0.23028	81.6
15		511.0	0.23028	117.7	18			0.21224	77.5
19		511.0	0.21224	108.5	19			0.19562	73.7
20		511.0	0.19562	100.0	20			0.18029	70.4
21	15.0		0.18029	92.1	21		-	0.16617	67.6
22	15.0		0.16617		22			0.15315	45.1
23	15.0		0.15315	78.3	23	_		0.14115	43.0
24	15.0	-	0.14115		24			9.13009	61.1
8	15.0		0.13009		25 24			0.11990	59.8
26	15.0		0.11990		27			0.11051	56.5
27	15.0		0.11051		21			0.10185	\$2.0
28	15.0		0.10185		8			.09387	48.0
29			0.09387		30		511.0		44.2
30			0.08652		3:			0.07974	40.7
31			0 0.07974		3:			0.07349	37.6
25			0.07349		3			0.06774	34.6
23			0 0.06774		3			0.06243	31.9
34			0 0.06243 0 0.05754		3		\$11.0	0.05754	29.4
39					3		511.0	0.05303	27.1
34			0 0.04888		3		511.0	0.04888	25.0
37			0 0.04505	-	3		511.0	0.04505	23.0
34			0 0.0415		3			0.94152	21.2
39				_	4			0.03827	19.6
41			0 0.0352		4	1 15.0	511.0	0.03527	18.0
4°			0 0.0325		4	2 15.0	511.0		16.6
4	-		0 0.0299	_	4	3 15.0	511.0	9.029%	15.3
					4	4 15.0	511.0	0.02761	14.1
4		_	0 0.0254		4	5 15.0		0.02545	13.0
			.0 0.0234		4	6 15.0		0.02345	12.0
•	·		0.0216		4	7 15.0		0.02162	
			0 0.0199		4	e 15.0		0.01992	10.2
	·		0 0.0183		4	9 15.0		0.01836	9.4
5			0.0169		9	0 15.0	511.0	0.01692	8.6
,				•••••					4123.1
	SE OF	MESENT (MORTHS	4954.2					0.08646
	PARTIAL			0.06646					0.08500
									356.5
	AVERACE	AMELIAL	AUTRE	428.4					

Table B 22D-Annual Transportation Costs - Upper Cuyahoga Iron Ore: Docks With 1.06 Feet Of Shoaling Per Year

	WITHOUT F			/e/////			114 240. /	ECT COMO!	TiQM (8000)
		THE RIVER				LID WHE		PRESENT	
PROJECT	CHAMEL	TRAKS	MORTH	VORTH	PROJECT	CHANNEL	TRAKS	MERTE	MICH TH
YEAR	DEFTH	COATE	FACTOR	WALLE	YEAR	BEPTH	COSTS	FACTOR	WALLE
1	23.0	5191.0	9.92166	4784.3	1	25.0	-	6.92144	4784.3
5	21.9		6.64944		2	25.0		9.84944	4409.5
3	20.9	5661.1	0.78291	4432.1	3	23.0		6.78291	4044.1
4	19.4	-	9.72157		4	23.0		0.72157	
5	18.8		0.66505		5	25.0		0.44505	3452.3
6	17.7		0.61295		6	23.0		0.41295	3181.8
7	16.6		0.54493		7	23.0		0.54493	2932.5 2702.8
6	15.4		0.52067		•	25.0		0.52067	-
•	15.0		0.47966		•	25.0		0,47988	2491.1 2295.9
_ 10	15.0		0.44229		10	23.0		0.40764	2273.V 2116.0
11	15.0		0.40764		11	23.0			1950.3
12	15.0		9.37570		12	23.0		0.37570 0.34627	
13	15.0		0.34627		13	23.0		0.31914	
. 14	15.0		0.31914		14	23.0		0.29414	
15	15.0		0.29414		15	23.0			1470.0
16	15.0	_	0.27110		16	21.9		0.27110	1414.5
17	15.0		0.24966		17	20.9		0.24966	1372.6
18	15.0		0.23028		16	19.8		0.23028	1330.1
19	15.0		0.21224		19	18.8			1319.2
50	15.0		0.19562		20	17.7		0.19562	
21	15.0		0.18029		21	16.6		0.18029	1314.4
22	15.0		0.16617		22	15.6		0.16617	
23	15.0		0.15315		23	15.0		0.15315	1273.3
24	15.0		0.14115		24	15.0		0.14115	1173.5
8	15.0		0.13009		25	15.0		0.13009	1061.6
26	15.0		0.11990	996.9	26	15.0		0.11990	996.9
27	15.0		0.11051	918.8	27	13.0		0.11051	916.8
28	15.0		0.10185	8.6.8	28	15.0		0.10185	846.8
29	15.0		0.09387	780.5	29	15.0		0.07387	780.5
30	15.0		0.06652	719.3	30	15.0		0.06652	719.3
31	15.0		0.07974	663.0	31	15.0		0.07974	6 63.0
32	15.0		0.07349	611.0	32	15.0		0.07349	611.0
23	15.0		0.06774	\$63.5	22	15.0		0.06774	563.2
34	15.0		0.06243	\$19.0	34	15.0		0.06243	519.0
35	15.0		0.05754	478.4	35	15.0		0.05754	478.4
36	15.0		0.05303	440.9	36	15.0		0.05303	440.9
37	15.0		0.04888	406.4	37	15.0		0.04888	406.4
36	15.0		0.04305	374.5	3.6	15.0		0.04505	374.5
39	15.0		0.04152	345.2	39	15.0		0.04152	345.2
40	15.0		0.03827	318.1	40	15.0		0.03827	318.1
41	15.0		0.03527	293.2	41	15.0		0.03527	293.2
42	15.0		0.03251	270.2	42	15.0		0.03251	270.2
43	15.0		0.02996	249.1	43	15.0		0.02996	249.1
44		8314.0		229.6	44			0.02761	229.6
45		8314.0		211.6	45			0.62545	211.6
.46		#314.0			46			0.02345	
47		8314.0			47			0.02142	
48			0.01992		48	15.0		0.01992	
49			0.01836	152.7	49	15.0		0.01836	
\$0	15.0	8314.0	Q.01692		50	15.0	8314.0	0.01692	
									47770.3
	BUR OF PRI			8393 1.0					67239.2
	PARTIAL P	AYMENT FA	CTOR	0.08646					0.08646

	AVERAGE A	METAT AVE	VE .	7557.0					5813.7

Table B 23A-Annual Transportation Costs- Lower River Limestone:
Docks With .37 Feet Of shoaling Per Year

							193 TOHS)	
	WITHOUT PROJECT	COMPITION	(8000)	•	ITH PROJE			
	LID LAR RIVER					E SIVER	PRESENT	
PROJECT	CHAMEL TRAIS	MORTH	MORTH	PROJECT	CHANNEL	TEARS	MORTH	MORTH
TEAR	GEPTH COSTS	FACTOR	WILLE	YEAR	DEPTH	C0515	FACTOR	WILLE.
1	25.0 6,242.0	••••	5,771.4	1	25.0	6,262.0	0.92166	
z	22.4 4,389.4	0.84946	5,427.7	2			0.04946	3,317.3
3	22.3 6,445.3	0.76291	5,077.4	3		4,262.0	6.7627	4,902.6
4	21.9 4,620.0			4	23.0		9.72157	
5			4,610.1	5		6,242.0		4,144.5 3,838.3
6			4,248.9	•	23.0	-	8.61295	3,537.6
7	20.8 7,063.4		3,990.3	7		4,242.0		3,260.4
•	20.4 7,248.2		3,773.9			6,262.0		3,005.0
•	20.0 7,433.0	0,47768	3,566.9	•		6,262.0		2,769.6
10	19.7 7,595.6			10		6,262.0		2,552.6
11	19.3 7,812.4		3,184.6	11		6,262.0		2,352.6
12	18.9 8,040.2		3,020.7	12		6,262.0	0.34627	· ·
13	18.6 8,235.8			13		4,262.0		1,996.5
14	18.2 8,496.6		2,711.6	14		6,262.0		1,841.9
15	17.8 8,784.8		2,584.0	15 16		6,389.6		1,732.2
16	17.4 9,100.4		2,407.1	17		6,485.3		1,620.4
17	17.1 9,337.1		2,333.0	18		6,620.0		1,524.5
18	16.7 9,709.4		2,235.9	19		6,776.0		1,438.2
19	16.3 10,100.6		2,143.8 2,033.2	20		6,932.0		1,356.0
50	16.0 10,394.0		1,963.6	21		7,063.4		1,273.5
21	15.6 10,891.2		1,892.4	22			_	1,204.4
22	15.2 11,388.4		1,744.1	23		7,433.0		1,138.4
23	15.0 11,388.4		1,607.5	24		7,595.6		1,072.1
24	15.0 11,388.4		1,481.6	25			0.13009	1,016.3
8	15.0 11,388.4 15.0 11,388.4		1,365.5	26		8.040.2	0.11990	964.0
26	15.0 11,388.4		1,258.5	27		8,235.8		910.1
27	15.0 11,388.4		1,159.9	26		8,496.6		865.4
28 29	15.0 11,388.4			25		8,784.8		\$24.6
30	15.0 11,388.4		* <u>.</u>	30		9,100.4	0.08652	787.4
31	15.0 11,388.4		908.1	31				744.5
32	·					9,709.4	0.07349	713.6
1 2	15.0 11,388.4	_		33		10,100.6	0.06774	684.2
33 34	15.0 11,388.4					10,394.0	0.06243	648.9
35	15.0 11,388.4				15.6	10,891.2	0.05754	626.7
35 36					15.2	11,388.4	0.05303	603.9
37	· · · · · · · · · · · · · · · · · · ·			37	7 15.0	11,388.4	0.04888	556.6
38	· · · · · · · · · · · · · · · · · · ·				15.0	11,388.4	0.04505	513.0
30	· _			31	15.0	11,388.4	0.04152	472.8
40	·	-		. 41	15.0	11,388.4	0.03827	435.8
41				41	15.0	11,368.4	0.03527	
42			370.2	4.	15.0	11,388.4	0.03251	
43			341.2	4.	3 15.0	11,388.4	0.02996	
44			314.5	. 4	15.0	11,385.4	0.02761	314.5
45		0.02545	289.6	4:			0.92545	289.8
46				4			0.02345	
47				4			0.02162	
48				4			0.01992	
49				4			0.01836	
50		4 U 01692	192.7	5	0 15.0	11,366.4	0.01692	
	•							
	SUM OF PRESENT U	DRTHS	94,132.9	,				78,588.1
	PARTIAL PAYMENT	FACTOR	0.08646	,				0.06646
			•••••					
	AVERAGE AMMUAL V	ALUE	8,139.0)				6.795

Table B 23B-Annual Transportation Costs- Middle River Limestone:
Docks With .44 Feet Of shoaling Per Year

			COMP I T I CHICA					ECT COME	ITION (8000)
		HE SINES	PRESENT			LID TOL			
PROJECT	CHAMMEL	TRAKS	MORTH	MORTH	PROJECT	CHAINEL	TRANS		
WEAR	DEPTH	COSTS	FACTOR	WALUE	YEAR	DEPTH	COSTS	FACTO	F WALLE
1	25.0	919.0	0.92166	647.0	1	23.0	919,0	8.1216	6 847.0
2	22.6		0.84946	789.5	2	23.0	919.0	0.8494	780.6
3	22,1	942.4	0.78291	737.8	3	23.0	919,0	0.7627	719.5
4	21.7	955.2	0.72157	489.2	4	23.0	919,0	0.7215	7 443.1
5	21.2		0.46505	646.6	5	25.0	919.0	9.4650	611.2
6	20.6	705.2	0.41295	605.7	•	23.0		0.6129	
7	20.4		0.54493	368.7	7	23.0		0.5647	
8	19.9		0.52067	\$36.6	•	25.0		0.3206	
•	19.5		0.47968	505.3	•	23.0		0.4796	
10	19.0		0.44229	478.1	10	3.0		0.4422	
11	18.6		0.40764	451.9	11	23.0		0.4076	
12	18.2		0.37570	426.9	12 13	23.0 23.0		0.37577	
13 14	17.7 17.3		0.34627	406.6 385.1	13	23.0		0.31914	
15	16.8		0.31414	368.1	15	23.0		0.29414	
16	16.4		0.27110	350.3	16	22.6		0.27110	
17	16.0		0.24966	333.1	17	22.1		0.2498	
18	15.5		0.23028	321.8	18	21,7		0.23020	
19	15,1	1449.1	0.21224	307.6	19	21.2	972.2	0.21224	206.3
20	15.0	1462.0	0.19562	286.0	20	20,8	968.2	0.19562	193.3
21	15.0	1462.0	0.18029	263.6	21	20.4	1006.6	0.18029	181.5
22	15.0	1462.0	0.16617	242.9	22	19.9	1030.6	0.16617	171,3
23	15.0	1462.0	0.15315	223.9	23	19.5	1053.0	0.15315	161.3
24	15.0	1462.0	0.14115	206.4	24	19.0	1061.0	0.14115	152.6
25	15.0	1462.0	0.13009	170.2	బ	18.6	1108.6	6.13009	144.2
26	15.0		0.11990	175.3	26	18.2		0.11990	
27	15.0		0.11051	161.6	27	17,7		0.11051	
28	15.0		0.10165	148.9	28	17.3		0.10185	
29	15.0		0.07387	157.2	29	16.8		0.07387	
30	15.0		0.05652	126.5	30	16.4		0.06652	
31	15.0		0.07974	116.6	31	16.0		0.07974	
33 ·	15.0 15.0	_	0.07349	107.4 99.0	22 22	15.5 15.1		0.06774	
34	15.0		0.06243	91.3	3.5 34	15.0		0.96243	
35	15.0	1462.0		84.1	35	15.0		0.05754	
36	15.0		0,05303	77.5	36	15.0		0.05303	
37	15.0		0.04888	71.5	37	15.0		0.04888	
38	15.0	1462.0		45.9	38	15.0		0.04505	
39	15.0	1462.0		40.7	39	15.0	1462.0	0.04152	
40	15.0	1462.0	0.03827	55.9	40	15.0	1462.0	0.03827	55.9
41	15.0	1462.0	0.03527	51.6	41	15.0	1462.0	0.03527	\$1.6
42	15.0	1462.0	0.03251	47.5	42	15.0	1462.0	0.03251	47.5
43	15.0	1462.0	0.02996	43.8	43	15.0	1462.0	0.02996	43.8
44	15.0	1462.0		40.4	44	15.0		9.02761	40.4
45		1462.0		37.2	45			4.02545	
46		1462.0		34.3	46				34.3
47		1462.0		31.6	47			0.02162	
48		1462.0		29.1	48			0.01992	
49		1462.0		8.85	49			0.01836	
50	15.0	1462.0	u.01692	24.7	50	15.0	1462.0	0.01692	
•	M OF PRE	SENT MORT	NS 1	3,115.3					11,348.7
	RTIAL PA			0.08646	•				0.06646
4	ERACE AM	MIAL VALU	Ε	1.134.0					961.2

Table B 23C-Annual Transportation Costs- Middle River Limestone:
Docks With .53 Feet Of shoaling Per Year

			MOITION (LIE MOOL	BIVER		
	FRD MOOFE			PRESENT	PROJECT	CHANNEL	TRANS	MORTH	MORTH
	CHANNEL	TRANS	MORTH	MORTH		DEPTH	COS15	FACTOR	VALUE
EM	DEPTH	COSTS	FACTOR	AVTRE	YEAR	PEFIR		1	
	23.0	279.0	0.92166	257.1	1	23.0	279.0	0.92166	257.1
1	22.5	279.5	0.84946	237.4	5	23.0	279.0	0.84946	236.9
5	21.9	280.4	0.78291	219.5	3	23.0	279.0	0.76291	218.4
3	21.4	282.4	0.72157	203.6	4	23.0	279.0	0.72157	201.3
5	20.9		0.46505	189.6	5	23.0	279.0	0.66505	185.5
4	20.3		0.61295	178.8	6	23.0	279.0	0.61295	171.0
7	19.8	298.6	0.54493	168.7	7	23.0	279.0	0.56473	157.6
٠	19.3	307.4	0.52067	140.2		23.0	279.0	0.52067	145.3
÷	18.8		0.47988	152.5	9	23.0	279.0	0.47968	133.9
10	18.2	332.2		146.9	10	23.0	279.0	0.44229	123.4
11	17.7		0.40764	140.9	11	23.0	279.0	0.40764	113.7
12	17.2	360.2		135.3	12	23.0	279.0		104.8
13	16.6	380.4	0.34627	131.7	13	23.0	279.0	0.34627	96.6
14	16.1	396.4	0.31914	127.1	14	23.0	279.0		89.0
15	15.6	419.6	0.29414	123.4	15	23.0	279.0		62.1
16	15.0	446.0	0.27110	120.9	16		279.5	0.27110	75.6
17		446.0	0.24986	111.4	17		280.4	0.24986	70.1
18	15.0	446.0	0.23026	102.7	18		282.4	0.23028	65.0 60.5
19	15.0	446.0	0.21224	94.7	19		_	0.21224	57.1
20	15.0	446.0	0.19562	87.2	20		291.7		53.8
21	15.0	446.0	0.18029	80.4	21		298.6		51.1
22	15.0	446.0		74.1	22		307.6	0.15315	48.7
23	15.0	446.0		68.3	23		•	0.13313	46.9
24	15.0	446.0		63.0	24		-	0.13009	45.0
25		446.0		58.0	25 26			0.11990	43.2
26		446.0		53.5	27		380.4	0.11051	42.0
27		446.0		49.3	28		398.4		40.6
28		446.0		45.4	29		-	0.09387	39.4
29		446.0	_	41.9	30			0.08652	38.6
30		446.0		38.6	31		446.0		35.6
31		446.0		35.6 32.8	32		446.0		32.8
32		446.0		30.2	33		446.0		30.2
33		446.0 446.0			34		446.0	0.06243	27.8
34		446.0		25.7	39		446.0	0.05754	25.7
35		446.0			34		446.0	0.05303	23.7
36 37		446.0			37		446.0	0.04888	21.8
36		446.0			30	15.0	446.0	0.04505	20.1
39		446.0			30	15.0	446.0		18.5
40		446.0			40	15.0	446.0		17.1
41		446.0		_	41	15.0	446.0		15.7
42		446.0			4;	15.0	446.0		14.5
43	_	446.0	0.02996	13.4	41		446.0		13.4
44			0.02761	12.3	44			0.02761	12.3
45			0.02545		49			0.02545	11.4
44		446.0	0.02345	10.5	4			0.02345	10.5
47		446.0	0.02162	9.6	4			0.02162	9.6
44	15.0	446.0	0.01992		41			0.01992	8.9
49	15.0		0.01836		41			0.01836	8.7
50	15.0	446.0	0.01692		5	15.0	446.0	0.01692	7.5
				•••••					3,459.
	SUPI OF PR			4,027.6					0.0864
	PARTIAL P	ATMENT (ACTOR	0.08646					0.0004
				• • • • • •					200

Table B 23D-Annual Transportation Costs- Middle River Limestone:
Docks With .59 Feet Of shoaling Per Year

¥1	THOUT PROJ					r/m	PROJECT		4 (500
			PRESENT		900 KT	CHANNEL	TRANS	MORTH	WORT
TEAR	CHAMMEL DEPTH	TRANS	MORTH FACTOR		PROJECT YEAR	DEPTH	COSTS	FACTOR	WALL
					1			0.92166	53.
1 2	23.0 22.4		0.92166		2	23.0 23.0		0.84946	49.
3	21.8	58.4			3	23.0		0.76291	45.
	21.2	59.6			4	23.0		0.72157	41.
5	20.6	60.6		40.	5	23.0		9.46505	34.
4	20.1	61.8	0.41295	37.	4	. 23.0	58.0	0.41295	35.
7	19.5	43.5	0.54493	35.7	7	23.0	58.0	0.56493	32.
8	18.9	45.3	0.52067	34.0	8	23.0	\$6.0	0.52067	30.
9	18.3	47.1	0.47988	32.2	•	23.0		0.47965	27.
10	17.7		0.44229	30.6	10	23.0		0.44229	ಜ.
11	17,1	71.6		29.2	11	23.0		0.40764	23.
12	16.5		0.37570	28.0	15	23.0		0.37570	21.
13	15.9		0.34627	26.9	13	23.0		9.34627	20.
14	15.3		0.31914	25.9	14 15	23.0 23.0		0.31914	18. 17.
15 16	15.0 15.0		0.29414	24.4 22.5	16	22.4		0.27110	15.
17	15.0		0.24986	20.7	17	21.8		0.24986	14.
18	15.0		0.23026	19,1	18	21.2		0.23028	13.
19	15.0		0.21224	17.6	19	20.6		0.21224	12.
20	15.0		0.19562	16,2	20	20.1		0.19562	12.
21	15.0		0.18029	15.0	21	19.5	63.5	0,18029	11.
22	15.0	83.0	0.16617	13.8	22	18.9	65.3	0.16617	10.
23	15.0	83.0	0.15315	12,7	23	18.3	67.1	0.15315	10.
24	15.0	83.0	0.14115	11,7	24	17.7	69.2	0,14115	9.
25	15.0	83.0	0.13009	10.5	25	17.1	71.6	0.13009	9. :
26	15.0	83.0	0.11990	10.0	26	16.5		0.11990	8.9
27	15.0		0.11051	9.2	27	15.9		0.11051	8.0
28	15.0	83.0		8.5	28	15.3		0.10185	6.
29	15.0		0.09387	7.8	29	15.0		0.09387	7.
30	15.0	83.0		7.2	30	15.0		0.06652	7.
31	15.0	83.0		6.6	31	15.0		0.07974	6.4
32	15.0		0.07349	6.1	25	15.0		0.07349	6.
33	15.0		0.06774	5.6 5.2	33 34	15.0 15.0		0.06774	5.0 5.0
34 35	15.0 15.0		0.06243	4.8	35	15.0		0.05754	4.1
36	15.0		0.05303	4.4	36	15.0		0.05303	4.4
37	15.0		0.04888	4,1	37	15.0		88840.0	4,1
38	15.0		0.04505	3.7	38	15.0		0.04505	3.7
39	15.0		0.04152	3.4	39	15.0		0.04152	3.4
40	15.0	63.0	0.03827	3.2	40	15.0	83.0	0.03827	3.2
41	15.0	83.0	0.03527	2.9	41	15.0	83.0	0.03527	2.9
42	15.0	83.0	0.03251	2.7	42	15.0	83.0	0.03251	2.7
43	15.0	83.0	0.02996	2.5	43	15.0		0.02996	2.5
44	15.0		0.02761	2.3	4.4	15.0		0.02761	2.3
45	15.0		0.02545	1.5	45	15.0		0.02545	2.1
46	15.0		0.02345	1.9	46	15.0		0.02345	1.9
47	15.0		0.02162	1.8	47	15.0		0.02162	1.6
48	15.0		0.01992	1.7	48	15.0		0.01992	1.7
49	15.0		0.01836	1.5	70	15.0		0.01836	1.5
50	15.0	63.0	0.01692	1.4	50	15.0	0, زه	0.01692	1.4
_			ue	en7 6					
	LM OF PRES MRTIAL PAY			807.5 0.08646					711.0
•	natimi FAT	-CT: PAL		U.U0046					0.08646

Table B 23E-Annual Transportation Costs- Middle Riv€r Limestone:

Docks With .39 Feet Of shoaling Per Year

u i	THOUT PRO	JECT COMO	ition (Si	200)		WETH	PROJECT	COM01710	(9000)
		LE RIVER				LMD #00	LE RIVER	PRESENT	PRESENT
PROJECT		TRAKS	WORTH	WORTH	PROJECT	CHAMEL	TRANS	MORTH	MORTH
YEAR	DEPTH	COSTS	FACTOR	VALUE	YEAR	DEPTH	COSTS	FACTOR	MATRE
_					1	25.0	1 845 0	0.92146	1 811 1
1	23.0		0.92166	-	2		-	9.84946	
2	22.6 22.2		0.76291	-	3		-	0.78291	
3	21.8		0.72157	-	í		•	0.72157	
5	21.4		0.66505	-	5		-	0.44505	
6	21.0		0.61295	-	6		-		1,204.4
7	20.7		0.56493		7		-	0.54493	1,110.1
	20.3		0.52067	-			•	0.52067	1,023.1
. •	19.9		0.47968	1,103.8	9		-	0.47968	943.0
10	19.5		0.44229	-	10			0.44229	869.1
11	19.1		0.40764	966.8	11			0.40764	801.0
12	18.7		0.37570	935.5	12		-	0.37570	738.3
. 13	18.3		0.34627	887.1	13		-	0.34627	680.4
14	17.9		0.31914	841.6	14		-	0.31914	627.1
15	17.5		0.29414	800.5	15			0.29414	578.0
16	17.1		0.27110	760.7	16			0.27110	\$41.7
17	16.8		0.24986	719.1	17		-	0.24966	507.6
18	16.4		0.23028	686.2	18		-	0.23028	476.6
19	16.0		0.21224	621.7	19			0.21224	448.4
20	15.6		0.19562	627.4	20	21.0	2,156.0	0.19562	421.7
21	15.2		0.18029	600.8	21			0.18029	395.7
22	15.0		0.16617	564.1	22		-	0.16617	373.3
23	15.0		0.15315	519.9	23			0.15315	352.3
24	15.0		0.14115	479.2	24		-	0.14115	333.2
25	15.0		0.13009	441.7	25	19,1	2,420.9	0.13009	314.9
26	15.0		0.11990	407.1	26	18.7	2,490.0	0.11990	298.6
27	15.0		0.11051	375.2	27		•	0.11051	283.1
28	15.0		0.10185	345.8	26		•	0.10185	268.6
29	15.0		0.09387	318.7	29		-	0.09387	255.5
30	15.0		0.08652	293.7	30		•	0.08652	242.8
31	15.0		0.07974	270.7	31	16.8	2,878.0	0.07974	229.5
32	15.0		0.07349	249.5	32	16.4	2,980.0	0.07349	219.0
33	15.0		0.06774	230.0	33	16.0	2,929.0	0.06774	198.4
34	15.0		0.06243	211.9	34	15.6	3,207.2	0.06243	200.2
35	15.0		0.05754	195.3	35	15.2	3,332.4	0.05754	191.7
36	15.0		0.05303	180.0	36	15.0	3,395.0	0.05303	180.0
37	15.0		0.04888	165.9	37	15.0	3,395.0	0.04868	165.9
38	15.0		0.04505	152.9	36			0.04505	152.9
39	15.0		0.04152	141.0	39		3,395.0		141.0
40	15.0		0.03827	129.9	40		•	0.03827	129.9
41	15.0		0.03527	119.7	41	15.0	3,395.0	0.03527	119.7
42	15.0		0.03251	110.4	42	15.0	3,395.0	0.03251	110.4
43	15.0		0.02996	101.7	43	15.0	3,395.0	0.02996	101.7
44	15.0			93.7	44		3,395.0		93.7
45	. 15.0	3395.0	0.02545	86.4	45	15.0	3,395.0	0.02545	86.4
46	15.0	3395.0		79.6	46			0.02345	79.6
47	15.0	3395.0		73.4	47			0.02162	73.4
48	15.0	3395.0		67.6	48		3,395.0		67.6
40	15.0		0.01836	62.3	49		3,395.0		62.3
50	15.0		0.01692	57.5	50		3,395.0		57.5
		- *	-		-				• • • • • •
•	EUM OF PRE	SENT WOR	THS	28,868.6				;	24,492.8
	PARTIAL PA	YMENT FA	CTOR	0.08646					0.08646
				•••••					
	WERAGE AM	MUAL VALL	Ę	2.496.1					2.117.7

Table B 23F-Annual Transportation Costs- Upper River Limestone: Docks With .7 Feet Of shoaling Per Year

MI T	MOLIT PROJECT	COMBITI	OH (5000)	,		WITH PRO-	ECT COM	01110#	(\$000)
		PRESENT	PRESENT		UP+	a asvea a	MESEUT	PRESENT	
PROJECT	LID CHINL	TRANS	WORTH	MORTH	PROJECT	LND CHEME	TRANS	MORTH	MOM TH
YEAR	DEPTH	C011	FACTOR	VALUE	YEAR	DEPTH	COSTS	FACTOR	ANTINE
1	23.0	234.0	0.92166	217.5	1	23.0		8.92166	217.5
3	22.3	244.4	0.84946	207.4	2	23.0		0.84946	200.5
3	21.4	254.0	0.78291	198.9	3	23.0		0.78291	184.8
4	20.9	264.7	0.72157	191.0	4	23.0		0.72157	170.3
5	20.≥	274.6	0.66505	184.0	5	23.0		0.46505	157.0
6	19.5	290.0	0.61295	177.4	•	23.0		0.41295	144.7
7	18.8	304.8	0.56493	172.2	7	23.0		0.\$6493	133.3
8	18.1	321.6	0.52067	167.4	8	23.0		0.52067	122.9
9	17.4	341.4	0.47968	163.8	9	23.0		0.47965	113.3
- 10	16.7	363.8	0.44229	160.9	10	23.0		0.44229	104.4
11	16.0	389.0	0.40764	158.6	11	23.0		0.40764	96.2
12	15.3	419.8	0.37570	157.7	12	23.0		0.37570	86.7
13	15.0	433.0	0.34627	149.9	13	23.0		0.34627	81.7
. 14	15.0	433.0	0.31914	138.2	14	23.0		0.31914	75.3
15	15.0	433.0	0.29414	127.4	15	23.0		0.29414	69.4
16	15.0	433.0	0.27110	117.4	16	22.3		0.27110	66.3
17	15.0	433.0	0.24986	108.2	17	21.6		0.24986	63.5
18	15,0	433.0	0.23028	99.7	18	20.9		0.23026	61.0
19	15,0	433.0	0.21224	91.9	19	20.2		0.21224	58.7
20	15.0	433.0	0.19562	64.7	50	19.5		0.19562	\$6.7
21	15,0	433.0	0.18029	78.1	21	18.8		0.18029	55.0
22	15.0	433.0	0.16617	72.0	22	18.1		0.16617	53.4
23	15.0	433.0	0.15315	66.3	23	17.4		0.15315	52.3
24	15.0		0.14115	61.1	24	16.7		0,14115	\$1.4
25	15.0		0.13009	56.3	25	16.0		0.13009	50.6
26	15.0		0.11990	51.9	26	15.3		0,11990	\$0.3
27	15.0		0.11051	47.9	27	15.0		0.11051	47.9 44.1
28	15.0		0.10185	44,1	28	15.0	433.0		40.6
29	15.0		0.09387	40.6	29	15.0		0.09387	37.5
30	15,0		0.08652	37.5	20	15.0	433.0		37.5
31	15.0		0.07974	34.5	31	15.0		0.07974	31.8
32	15.0		0.07349	31.6	32	15.0		0.07349	29.3
23	15.0		0.06774	29.3	23	15.0		0.06774	27.0
34	15.0		0.06243	27.0	34	15.0		0.06243	
35	15.0		0.05754	24.9	35	15.0		0.05754	24.9
36	15.0		0.05303	23.0	36	15.0		0.05303	23.0
37	15.0		0.04888	21.2	37	15.0	433.0		21.2
38	15.0		0.04505	19.5	36	15.0		0.04505	19.5 18.0
39	15.0		0.04152	18.0	39	15.0	433.0	0.04152	16.6
40	15.0		0.03827	16.6	40	15.0	433.0		15.3
41	15.0		0.03527	15.3	41	15.0		0.03251	14.1
42	15.0		0.03251	14.1	42 43	15.0 15.0	433.0		13.0
43	15.0		0.02996	13.0 12.0	44	15.0	433.0		12.0
44	15.0		0.02761		45	15.0		0.02545	11.0
45	15.0		0.02545	11.0	46	15.0		0.02345	10.2
46	15.0		0.02345	9.4	47	15.0		0.02162	9.4
47	15.0		0.02162	8.6	48	15.0		0.01992	8.6
48	15.0		0.01992	8.0	49	15.0	-	0.01836	8.0
49 50	15.0 15.0		0.01692	7.3	50	15.0		0.01692	7.3
70	13.0	-22.0	V. V 1072	1.3	30			3.2.0.6	
	SUM OF PRES	CENT LINE	THS	3985.0					3,103.5
	PARTIAL PA			0.08646					0.08646

	AVERAGE ANI	RIAL VAL	JÆ	344.6					268.3

Table B 23G-Annual Transportation Costs- Upper River Limestone:
Docks With 1.06 Feet Cf shoaling Per Year

	-	ROJECT CI	DMD171Om ((8000)				ITH PROJE	CT COMDITION	(\$000)
	•	PER RIVE	R PRESENT	PRESENT		UPPE		PRESENT	PRESENT	
PROJECT	Tro Cum	L TRANS	MORTH	MORTH	PROJECT	TPD CHINE	L TRANS	MORTH	MORTH	
YEAR	DEPTH	27200	FACTOR	WALUE	YEAR	DEPTH	COSTS	FACTOR	WALLE	
1	, 23.0	1641.0	0.92166	1,512.4	1	23.0	1441.0	0.92166	1.512.4	
2	21.9			1,475.6	2			0.84946	-	
3	20.9	1839.4	0.78291	1,440.2	3	23.0	1641.0	0.78291	1,284.8	
4	19.8	1971.0	0.72157	1,422.2	4	23.0	1641.0	0.72157	1,184.1	
5	14.8	2111.2	0.66505	1,404.0	5	23.0	1641.0	0.66505	1,091.3	
6	17.7			1,408.7		23.0	1641.0	0.61295	1,005.6	
7	14.6			1,426.6	7			0.54493		
				1,453.5				0.52067		
9	15.0			1,425.7				0.47968		
				1,314.0				0.44229		
11				1,211.1				0.40764		
12				1,116.2				0.37570		
. 13			0.34627		13			0.34627		
14			0.31914	948.2	14			0.31914		
15			0.29414		15			0.29414		
17			0.24986		16 17			0.27110		
18			0.23028		18			0.24986		
19			0.21224		19			0.21224		
20			0.19562		20			0.19562	449.6	
21			0.18029		21			0.18029		
22			0.16617		22			0.16617		
23				455.0	23			0.15315	455.0	
24			0.14115	419.4	24			0.14115	419.4	
25			0.13009		25			0.13009	386.5	
26		2971.0	0.11990	356.2	26			6.11990	356.2	
27	15.0	2971.0	0.11051	328.3	27			0.11051	328.3	
28	15.0	2971.0	0.10185	302.6	28	15.0	2971.0	0.10185	302.6	
29	15.0	2971.0	0.09387	278.9	29	15.0	2971.0	0.09387		
30	15.0	2971.0	0.08652	257.0	30	15.0	2971.0	0.08652	257.0	
31	15.0	2971.0	0.07974	236.9	31	15.0	2971.0	0.07974	236.9	
32	15.0	2971.0	0.07349	218.3	35	15.0	2971.0	0.07349	218.3	
33	15.0	2971.0	0.06774	201.2	33	15.0	2971.0	0.06774	201.2	
34	15.0	2971.0	0.06243	185.5	34	15.0	2971.0	0.06243	185.5	
35		2971.0		170.9	35	15.0	2971.0	0.05754	170.9	
36		2971.0		157.6	36	15.0	2971.0	0.05303	157.6	
37			0.04888		37			0.04888	145.2	
38			0.04505		38			0.04505	133.8	
39			0.04152		39			0.04152		
40			0.03827		40			0.03827		
41			0.03527		41			0.03527		
42			0.03251		42			0.03251	96.6	
43		2971.0		89.0	43	15.0		0.02996	89.0	
44			0.02761		44			0.02761		
45 46			0.02545 0.02345		45			0.02545		
47			0.02345	69.7	46			0.02345		
48					47			0.02162		
49		2971.0 (2971. 0 (59.2 54.4	48			0.01992		
50		29 71.0 (54.6 50.3	49			0.01836		
30	15,0	£771,U 1	0.01072	50.5	50	15.0	ZV/1.0	0.01692	50.3	
	M OF PRES	FNT LINET	uc >=	9,152.9				_	2 0/6 2	
	RTIAL PAY			9,132.9 0. 08 646					2,045.7	
**									0.08646	
AV	ERAGE ANN	UAL VALIE		2.520.7					1.906.1	
			•						1.700.1	

Table B 24A-Annual Transportation Costs-Old River Canadian Salt: Lake Erie Ports

	ntnout PRO	ufct m	MOSTION C	\$000\		wite :	manufet (CONDITION	(8000)
			R PRESENT					PRESENT	
MUCT	LIED CHRIST		MORTH		PRJCT	LIO CIM		MORTH	10011
YEAR	DEPTH	COSTS	FACTOR	VALUE	TEAR	DEPTH	CD573	FACTOR	ANTIE
3.9	31.0	•••	0 07144			31.0	en A	0 07144	
2	21.0 20.6	92.4	0.92166		1 2	21.0 21.0	92.0 92.0	0.92164	84.6 78.1
3	20.3	_	0.78291	72.4	3	21.0	92.0		72.0
4	19.9	93.3		66.2	4	21.0	92.0		66.4
5	19.5	94.5	0.44505	63.6	5	21.0	92.0	0.46505	61.2
4	19.1	95.7	0.61295	58.7	4	21.0	92.0	0.61295	\$6.4
7	18.6	96.8	0.56493	54.7	7	21.0	92,0	0.56493	52.0
	18.4	96.4	0.52067	51.2		21.0	92.0		47.9
•	18.0	100.0	0.47968	48.0	9	21.0		0.47968	44,1
10	17.7	101.2		44.8	10	21.0	92.0	0.44229	40,7
11	17.3	102.8		41.9	11	21.0	92.0	0.40764	37.5
12	16.9	104.6	0,37570 0,34627	39.3 36.8	12 13	21.0	92.0 92.0	0.37570	34.6 31.9
14	16.6 16.2	108.8	0.31914	34.7	14	21.0 21.0	92.0	0.31914	29,4
15	15.8	111.4		32.8	15	21.0	92.0		27,1
16	15.4	114.2		31.0	16	20.4	92.4	0.27110	25.0
17	15.1		0.24986	29.1	17	20.3	92.7	0.24966	23.2
18	15.0	117.0		26.9	18	19.9	93.3	0.23026	21.5
19	15.0	117.0	0.21224	24.8	19	19.5	94.5	0.21224	20.1
50	15.0	117.0	0.19562	22.9	20	19,1	95.7	0.19562	18,7
21	15.0	117.0	0.18029	21.1	21	18.8	96.8	0.18029	17.5
22	15.0	117.0		19.4	22	18,4	98.4	0.16617	16.4
23	15.0	117.0		17.9	ય	18.0		0.15315	15.3
24	15.0		9,14115	16.5	24	17.7		0.14115	14.3
25	15.0		0.13009	15.2	25	17.3		0.13009	13.4
26	15.0		0.11990	14.0	26	16.9		0.11990	12.5
27 26	15.0 15.0		0.11051	12.9	27	16.6	106.4	0.11051	11.8
29	15.0		0.09387	11. <i>9</i> 11.0	28 29	16.2 15.8		0.10185 0.09387	11.1 10.5
30	15.0		0.08652	10.1	30	15.4		0.08652	9.9
31	15.0		0.07974	9.3	31	15.1		0.07974	9.3
32	15.0		0.07349	8.6	32	15.0		0.07349	8.4
33	15.0		0.06774	7.9	33	15.0		0.06774	7.9
34	15.0	117.0	0.06243	7.3	34	15.0	117.0	0.06243	7.3
35	15.0	117.0	0.05754	6.7	35	15.0	117.0	0.05754	6.7
36	15.0	117.0	0.05303	6.2	36	15.0	117.0	0.05303	5.6
37	15.0	117.0	0.04888	5.7	37	15.0	117.0	88840.0	5.7
38	15.0		0.04505	5.3	38	15.0		0.04505	5.3
39	15.0		0.04152	4.9	30	15.0		0.04152	4.9
40	15.0		0.03827	4.5	40	15.0		0.03827	4.5
41	15.0		0.03527	4,1	41	15.0		0.03527	4.1
42	15.0		0.03251	3.8	42	15.0	117.0		3.8
43	15.0			3.5	43	15.0		0.02996	3.5
45	15.0 15.0		0.02761	3.2 3.0	دد	15.0 15.0	117.0	0.02761 0.02545	3.2
46			0.02345	2.7	45 46			0.02345	3.0 2.7
47			0.02162	2.5	47			0.02343	2.5
48			0.01992	2.5	48			0.01992	2.3
49		117.0		2,1	49		117.0		2.1
50	15.0	117.0	0.01692	2.0	50		117.0		2.0
				•••••					
	M OF PRESE			1,191				,	1100.7
P	RTIAL PAYE	ENT FAC	TOR	0.08646					08646
				• • • • • • •				•	
AV	ERAGE ANNU	MI VALU	E	103.0					95.2

Table B 24B-Annual Transportation Costs-Old River Canadian Salt: Lake Ontario Ports

441	THOUT PEO	JECT COM	DITION (S	200)	MITH PROJECT COMPITION (\$600)					
•		R RIVER		PRESENT				PRESENT		
PR.JCT	LIO CHINEL		MORTH	MORTH		FPD CHIM		MORTH	MORTH	
YEAR	DEPTH	COSTS	FACTOR	WALLE	TEAR	DEPTH	CO675	FACTOR	ANTINE	
						34.0	1,299.0	0.92146	1197.2	
1		1,299.0		1,197.2	1		1,299.0	0.84946	1103.4	
5			0.84946	1,117.7	3		1,299.0	0.78291	1017.0	
3	20.3	1,328.4	0.76291	1,040.0	4		1,299.0	0.72157	937.3	
4	19.9	1,348.2		993.6	5		1,299.0	0.46505	843.9	
5			0.66505	934.9 861.7	6		1,299.0	0.61295	796.2	
4	19.1		0.61295	809.4	7		1,299.0	0.54493	733.8	
7	18.8	•		766.6			1,299.0	0.52067	676.3	
	18.4	1,472.4		725.6	9		1,299.0		623.4	
•	18.0	-	0.47988	484.8	10		1,299.0	0.44229	574.5	
10	17.7	1,548.3		450.9	11		1,299.0		529.5	
11	17.3		0.37570	619.1	12		1,299.0	0.37570	485.0	
12	16.9	1,692.2		586.0	13		1,299.0		449.8	
13	16.6	1,751.4		558.9	14		1,299.0	0.31914	414.6	
14	16.2	1,818.0		534.7	15		1,299.0	0.29414	382.1	
15	15.8	1,892.0		512.9	16		1,315.8		356.7	
16	15.4	1,947.5		486.6	17		1,328.4	0.24986	331.9	
17	15.1 15.0	1,966.0		452.7	18		1,348.2	0.23028	310.5	
18 19	15.0	1,966.0		417.3	15		1,377.0	0.21224	292.3	
20	15.0	1,966.0		384.6	20	19.1	1,405.8	0.19562	275.0	
21	15.0	1,966.0		354.5	21	18.8	1,432.6	0.18029	258.3	
22	15.0	1,966.0		326.7	22	16.4	1,472.4	0.16617	244.7	
23	15.0	1,966.0		301.1	23	18.0	1,512.0	0.15315	231.6	
24	15.0	1,966.0		277.5	24	17.7	1,548.3	0.14115	218.5	
25	15.0	1,966.0		255.8	2:	17.3	1,596.7	0.13009	207.7	
26	15.0	1,966.0		235.7	26	16.9	1,647.8		197.6	
27	15.0	1,966.0		217.3	21	16.6	1,692.2	0.11051	187.0	
28	15.0	1,966.0		200.2	28	16.2	1,751.4		178.4	
29	15.0	1,966.0		184.6	25	15.8	1,818.0	0.09387		
30	15.0	1,966.0		170.1	30	15.4	1,892.0		163.7	
31	15.0	1,966.0		156.6	3	15.1	1,947.5	0.07974	155.3	
32	15.0	1,966.0		144.5	3	15.0	1,966.0			
33	15.0	1,966.0		133.2	3	15.0	1,966.0	0.06774		
34	15.0	1,966.0		122.7	3	4 15.0	1,966.0			
35	15.0	1,966.0		113.1	3	5 15.0	1,966.0			
36	15.0	1,966.0		104.3	3	6 15.0	1,966.0			
37	15.0	1,966.0		96.1	3	7 15.0	1,966.0			
38	15.0	1,966.0		88.6	3	8 15.0	1,966.0			
39	15.0	1,966.0	0.04152	81.6	3	9 15.0	1,966.0			
40		1,966.0		75.2	4	0 15.0	1,966.0			
41	15.0	1,966.0	0.03527	69.3	4	1 15.0	1,966.0			
42	15.0	1,966.0	0.03251	63.9	4	2 15.0	1,966.0			
43	15.0	1,966.0	0.02996	58.9	4	3 15.0	1,966.0			
44	15.0	1,966.0	0.02761	54.3	4		1,966.0			
45	15.0	1,966.0	0.02545	50.0	4			0.02545		
46			0.02345		4			0.02345		
47		1,966.0	0.02162					0.02162		
48	15.0	1,966.0	0.01992	39.2				0.01992		
49	15.0	1,966.0				9 15.0		0.01836		
50	15.0	1,966.0	0.01692		5	0 15.0	1,966.0	0.01692		
									14010 0	
	SUM OF P			18,468.3					16019.9	
	PARTIAL	PAYMENT F	FACTOR	0.08646					0.08646	
									1385.1	
	AVERAGE	ANNUAL VI	LUE	1,5%.8					۰. د ټوو ۱	

Table B 24C-Annual Cransportation Costs-Old River Canadian Salt: St Lawrence Ports

•	-	OJECT CO	MDITION (1	(000	v	ITH PRO	LJECT	COM0	ITION .	(\$000)
	U	M RIVER	PRESENT	PRESENT		4		HER	PRE SE U	PRESENT
PRJCT	rab Came	L TRANS	MORTH	MORTH	PROJECT	-	lastic 1	RAHS	WORT	I WORTH
TEAR	DEPTH	COSTS	FACTOR	AVTRE	YEAR	DEPTI	• (37300	FACTO	VALUE
1			0.92166	1,306.9	1	21.0	-		0.7216	
2		1,438.8		1,222.2	2	21.0	-	14.0		-
3		1,454.4		1,138.7	2	21.0	-	18.0		
5		1,514.0		1,092.5 1,030.3	4 5	21.0 21.0	-	18.0		
6	19.1	1,549.2		949.6	6	21.0	-	18.0		
7		-	0.56493	893.8	7	21.0	-		0.56493	
	18.4	1,430.4		849.0	8	21.0	•	18.0		
•		1,679.0		805.7	9	21.0	•	18.0	0.47968	
10		1,725.4	0.44229	762.2	10	21.0	•	18.0	0.44229	
11	17.3	1,782.6	0.40764	726.7	11	21.0	-	18.0	0.40764	
12	16.9	1,845.1	0.37570	693.2	12	21.0	1,4	18.0	0.37570	
15	16.6	1,899.4	0.34627	657.7	13	21.0	1,4	18.0	0.34627	491.0
14	16.2	1,971.8	0.31914	629.3	14	21.0	1,4	18.0	0.31914	452.5
15	15.6	2,053.0	0.29414	603.9	15	21.0	1,4	18.0	0.29414	417.1
16	15.4	2,143.0	0.27110	581.0	16	20.6	1,4	38.8	0.27110	390.1
17	15.1	2,210.5	0.24986	552.3	17	20.3	1,4	54.4	0.24986	363.4
18		2,233.0	0.23026	514.2	18	19.9	1,4	78.8	0.23028	340.5
19		2,233.0	0.21224	473.9	19	19.5	1,5	14.0	0.21224	321.3
20		2,233.0	0.19562	436.8	20	19.1	-	19.2		303.0
21		-	0.18029	402.6	21	18.8	•	12.2		285.3
22			0.16617	371.1	22	18.4		30.6		271.0
23		•	0.15315	342.0	23	18.0		79.0		
24 25		2,233.0	0.14115	315.2	24	17.7		23.4	0.14115	243.3
26		2,233.0	0.13009	290.5	25	17.3	-	2.6	0.13009	231.9
27		-	0.11990 0.11051	267.7	26	16.9	•	5.1	0.11990	221.2
28		2,233.0		246.8 227.4	27 28	16.6	•	7.4	0.11057	209.9
29		2,233.0	0.09387	209.6	20 29	16.2 15.8	-	1.8 3.0	0.10185	200.8
30		2,233.0		193.2	30	15.4	-		0.09387	192.7 185.4
31		2,233.0		178.1	31	15.1	-	0.5	0.07974	176.3
32		2,233.0		164.1	32	15.0	-		0.07349	164.1
33			0.06774	151.3	33	15.0			0.06774	151.3
34		-	0.06243	139.4	34	15.0	-		0.06243	139.4
35		,233.0		128.5	35	15.0			0.05754	128.5
36	15.0 2	,233.0	0.05303	118.4	36	15.0			0.05303	118.4
37	15.0 2	,233.0	0.04888	109.1	37	15.0	2,23		0.04888	109.1
38	15.0 2	,233.0	0.04505	100.6	38	15.0			0.04505	100.6
39	15.0 2	, 233.0	0.04152	92.7	39	15.0	2,23		0.04152	92.7
40	15.0 2	,233.0	0.03827	85.4	40	15.0	2,23	3.0	0.03827	85.4
41		,233.0	0.03527	78.8	41	15.0	2,23	3.0	0.03527	78.8
42	15.0 2	,233.0	0.03251	72.6	42	15.0	2,23	3.0	0.03251	72.6
43			0.02996	66.9	43	15.0	2,23	3.0	0.02996	66.9
44			0.02761	61.7	44	15.0	2,23		0.02761	61.7
45		,233.0		\$6.8	45				0.02545	56.8
46		,233.0		\$2.4	46				0.02345	\$2.4
47	15.0 2			48.3	47				0.02162	48.3
48	15.0 2			44.5	48				0.01992	44.5
40		. 233.0		41.0	49				0.01836	41.0
50	15.0 2.	,233.0		37.6	50	15.0	2,233	.0	0.01692	37.8
e =	OF PRESE			41/ 7						
	OF PRESE TIAL PAYE			,614.2 .08646						7618.9
FAR	· INL FRIF	-CHI FAL		.08646					ć	0.08646
AVE	RAGE ANNU	MI VALLE		.782.4						*****
-75			. ,	04 . 6						1523.4

Table B 24D-Annual Transportation Costs-Old River U. S. Salt: Lake Michigan Ports

u	THOUT PRO	JECT COM	0171 0= (\$	200)		(8000)			
	Q	D RIVER	PRESENT	PRESENT			D SINES		
PRJCT	LIND CHIMIL	TRANS	MORTH	MORTH			IL TRANS	WORTH	MORTH
TEAR	DEPTH	COS15	FACTOR	AVTIE	TEAR	BEPTH	COSTS	FACTOR	MALLIE
					_			0.92166	1731.8
1	21.0	1,879.0	0.92166	-	1	21.0	1,879.0		1596.1
2	20.6	1,899.8	0.84946	-	Z	-	1,879.0	0.76291	1471.1
3	20.3	1,915.4	0.78291	-	3	21.0 21.0		0.72157	-
4	19.9	1,941.4	0.72157		5		1,879.0		1249.6
5	19.5	1,983.0			6			0.61295	1151.7
6	19.1	2,024.6	0.61295		7		1,879.0	0.54493	1061.5
7	18.6		0.56493 0.52067			21.0	1,879.0		978.3
8 9	18.4 18.0	2,121.4			•	21.0	1.879.0		901.7
10	17.7	2,232.1	0.44229	967.2	10		1,879.0		£31.1
11	17.3	2,302.9		938.7	11	21.0	1,879.0		765.9
12	16.9	2,377.6	0.37570	893.3	12	21.0	1,679.0	0.37570	705.9
13	16.6	-	0.34627	845.7	13	21.0	1,879.0	0.34627	650.6
14	16.2	2,528.8		807.0	14	21.0	1,879.0	0.31914	599.7
15	15.8	2,625.0		772.1	15	21.0	1,879.0	0.29414	552.7
16	15.4	-	0.27110	740.4	16	20.6	1,899.8	0.27110	515.0
17	15.1	-	0.24986	702.2	17	20.3	1,915.4	0.24986	478.6
18	15.0		0.23028	653.3	18	19.9	1,941.4	0.23028	
19	15.0	2,837.0	0.21224	602.1	19	19.5	1,963.0	0.21224	
20	15.0	2,837.0	0.19562	555.0	20	19.1	2,024.6		
21	15.0	2,837.0	0.18029	511.5	21	18.6	2,063.8	0.18029	
22	15.0	2,837.0	0.16617	471.4	22	18.4	2,121.4		
23	15.0	2,837.0	0.15315	434.5	23		2,179.0		
24	15.0	2,637.0	0,14115	400.4	24		2,232.1		
25	15.0	2,837.0	0.13009	369.1	25		2,302.9		
26	15.0	2,837.0	0.11990	340.2	26		2,377.6		
27	15.0	2,837.0	0.11051	313.5	27		2,442.4		
28	15.0	2,837.0	0.10185	289.0	28		2,528.8		
29	15.0		0.09387		29				
30	15.0	2,837.0	0.08652	245.5	30		2,731.0		
31	15.0	2,837.0	0.07974	226.2	31		2,810.5		
32	15.0	2,837.0		208.5	32		2,837.0 2,837.0		
33	15.0	-	0.06774	192.2	33 34	15.0 15.0			
34	15.0	-	0.06243	177.1	35		2,837.0		
35	15.0	•	0.05754	163.2 150.4	36		2,837.0		
36	15.0	-	0.05303	138.7	37		2,837.0		
37	15.0	2,837.0	0.04505	127.8	38		-		
38	15.0	2,837.0	0.04152	117.8	39		2,837.0		
39 40	15.0 15.0	-	0.03827	106.6	40		2,837.0		
41	15.0	2,837.0		100.1	41		2,837.0	0.03527	100.1
42	15.0	-	0.03251	92.2	42		2,837.0	0.03251	92.2
43	15.0	2,837.0	0.02996	85.0	43		2,837.0	0.02996	85.0
44	15.0	2,837.0	0.02761	78.3	44	15.0	2,837.0	0.02761	78.3
45			0.02545	72.2	45	15.0	2,837.0	0.02545	72.2
46			0.02345		46		2,837.0		
47		-	0.02162		47		2,837.0		61.3
48			0.01992		48	15.0	2,837.0	0.01992	56.5
49		2,837.0		52.1	49	15.0	2,837.0	0.01836	
50		2,837.0		48.0	50	15.0	2,837.0	0.01692	
- *		•		•••••					• • • • • •
	SUR OF PR	ESENT WO	RTHS	26,641					23150.2
	PARTIAL P	AYMENT F	ACTOR	0.08646					0.08646
	AVERAGE A	MACIAL VA	LUE	2.303.5					2001.6

Table B 24E-Annual Transportation Costs-Old River U. S. Salt: Lake Huron Ports

W	THOUT PR	DIECT CO	MOITION (1	10001	MITH PROJECT COMPITION (\$900)						
		LD RIVER	PRESENT	PRESENT		Q.	D EIVER	PRESENT	PRESENT		
	CRD CMMI			MORTH	PRJCT	FRD CHIM	IL TRANS	WORTH			
YEAR	DEPTH	COSTS	FACTOR	VALUE	YEAR	DEPTH	COSTS	FACTOR	MILLE		
1	21.0		0.92166	164.1		34.0			•44		
2	21.0 20.6		0.84946	152.9	1	21.0 21.0		0.72166			
3	20.3		0.78291	142.1	3	21.0	178.0	0.84946			
4	19.9		0.72157	134.9	4	21.0		0.72157			
5	19.5		0.66505	126.5	5	21.0		0.66505			
	19.1		0.61295	116.6	6	21.0		0.61295			
7	18.8		0.56493	109.1	7	21.0		0.56493			
	18.4		0.52067	102.9		21.0		0.52067			
•	18.0		0.47968	96.9	ý	21.0		0.47988			
10	17.7		0.44229	91.2	10	21.0		0.44229	76.7		
11	17.3		0.40764	86.3	11	21.0		0.40764	72.6		
12	16.9	217.7	0.37570	81.6	12	21.0		0.37570			
13	16.6		0.34627	77.1	13	21.0		0.34627	61.6		
14	16.2	229.6		73.3	14	21.0		0.31914	56.8		
15	15.8		0.29414	69.7	15	21.0		0.29414	52.4		
16	15.4	245.0		66.4	16	20.6		0.27110	48.6		
17	15.1		0.24966	62.7	17	20.3		0.24966	45.3		
18	15.0	253.0	0.23028	58.3	15	19.9		0.23028	42.3		
19	15.0	253.0	0.21224	53.7	19	19.5	187.0	0.21224	39.7		
20	15.0	253.0	0.19562	49.5	20	19.1	190.2	0.19562	37.2		
21	15.0	253.0	0.18029	45.6	21	18.8	193.2	0.18029	34.8		
22	15.0	253.0	0.16617	42.0	22	18.4	197.6	0.16617	32.8		
23	15.0	253.0	0.15315	38.7	23	18.0	202.0	0.15315	30.9		
24	15.0	253.0	0.14115	35.7	24	17.7	206.2	0.14115	29.1		
25	15.0	253.0	0.13009	32.9	25	17.3	211.8	0.13009	27.6		
26	15.0	253.0	0.11990	30.3	26	16.9	217.7	0.11990	26.1		
27	15.0	253.0	0.11051	28.0	27	16.6	222.8	0.11051	24.6		
28	15.0	253.0	0.10185	25.8	28	16.2	229.6	0.10185	23.4		
29	15.0	253.0	0.09387	23.7	29	15.8	237.0	0.09387	22.2		
30	15.0		0.08652	21.9	30	15.4	245.0	0.08652	21.2		
31	15.0	253.0	0.07974	20.2	31	15.1	251.0	0.07974	20.0		
32	15.0	253.0	0.07349	18.6	32	15.0	253.0	0.07349	18.6		
33	15.0	253.0	0.06774	17.1	33	15.0	253.0	0.06774	17,1		
34	15.0		0.06243	15.8	34	15.0	253.0	0.06243	15.8		
35	15.0		0.05754	14.6	35	15.0	253.0	0.05754	14.6		
36	15.0		0.05303	13.4	36	15.0	253.0	0.05303	13.4		
37	15.0		0.04888	12.4	37	15.0	253.0	0.04888	12.4		
38	15.0		0.04505	11.4	38	15.0		0.04505	11.4		
39	15.0		0.04152	10.5	39	15.0		0.04152	10.5		
40	15.0		0.03827	9.7	40	15.0		0.03827	9.7		
41	15.0		0.03527	6.9	41	15.0		0.03527	8.9		
42	15.0		0.03251	8.2	42	15.0		0.03251	8.2		
43	15.0	253.0		7.6	43	15.0		0.02996	7.6		
45	15.0		0.02761	7.0	44	15.0		0.02761	7.0		
	15.0	253.0		6.4	45			0.02545	6.4		
46			0.02345	5.9				0.02345			
47			0.02162	5.5	47			0.02162	5.5		
48 49		253.0 (253.0 (5.0	48			0.01992	5.0		
50		253.0		4.6	49		253.0		4.6		
30	13.0	200.0		4.3	50	15.0	253.0		4.3		
6 1=	OF PRESI								*****		
	TIAL PAYE			447.9 08646					2171.3		
TAI	PATE	THE PAGE		U8646					.08646		
44	RAGE AME	Mr. V4114		211.7					*****		
P46			•	£11.7					187.7		

Table B 24F-Annual Transportation Costs-Old River U. S. Salt: Detroit River Ports

V I			MD1710m (1		VITH PROJECT CONDITION (8000) IT OLD RIVER PRESENT PRESENT						
		D RIVER		PRESENT			BIAES				
	FPD CHIMIT	TRANS		MORTH		FIND CHINK			MORTH		
YEAR	DEPTH	COSTS	FACTOR	VALUE	TEAR	DEPTH	COSTS	FACTOR	WALLE		
1	21.0	360.0	0.92166	331.6	1	21.0	360.0	0.92166	231.a		
ž	20.6	362.8		306.2	ż	21.0	360.0		305.8		
3	20.3	364.9		265.7	3	21.0	360.0		281.8		
4	19.9	368.1		268.8	4	21.0	360.0	0.72157	259.6		
5	19.5	372.5	0.66505	250.7	5	21.0	360.0	0.66505	239.4		
6	19.1	376.9	0.61295	231.0	6	21.0	360.0	0.61295	220.7		
7	18.8	381.2	0.56493	215.3	7	21.0	360.0	0.56493	203.4		
8	18.4	387.6	0.52067	201.8	8	21.0	360.0	0.52067	187.4		
9	18.0	394.0	0.47968	189.1	9	21.0	360.0		172.8		
10	17.7	399.4	0.44229	176.6	10	21.0	360.0	0.44229	159.2		
11	17.3	406.6	0.40764	165.7	11	21.0	360.0	0.40764	146.7		
12	16.9	414.3	0.37570	155.7	12	21.0	360.0	0.37570	135.3		
13	16.6	421.2	0.34627	145.8	13	21.0	360.0	0.34627	124.7		
14	16.2	430.4	0.31914	137.4	14	21.0	360.0	0.31914	114.9		
15	15.8	440.6	0.29414	129.6	15	21.0	360.0	0.29414	105.9		
16 17	15.4 15.1	451.8 460.2	0.27110	122.5 115.0	16 17	20.6 20.3	362.8 364.9	0.27110 0.24986	98.4 91.2		
18	15.0	463.0		106.6	18	19.9	368.1	0.23028	84.8		
19	15.0	463.0		98.3	19	19.5	372.5	0.21224	79.1		
20	15.0	463.0	0.19562	90.6	20	19,1	376.9		73.7		
21	15.0	463.0	0.18029	83.5	21	18.8	381.2	0.18029	68.7		
22	15.0	463.0	0.16617	76.9	22	18.4	387.6	0.16617	64.4		
23	15.0	463.0	0.15315	70.9	23	18.0	394.0	0.15315	60.3		
24	15.0	463.0	0.14115	65.	24	17,7	399.4	0.14115	\$6.4		
25	15.0	463.0	0.13009	60.2	25	17.3	406.6	0.13009	52.9		
26	15.0	463.0	0.11990	55.5	26	16.9	414.3	0.11990	49.7		
27	15.0	463.0	0.11051	51.2	27	16.6	421.2	0.11051	46.5		
28	15.0	463.0	0.10185	47.2	28	16.2	430.4	0.10185	43.8		
29	15.0	463.0	0.09387	43.5	29	15.8	440.6	0.09387	41,4		
30	15.0	463.0	0.08652	40.1	30	15.4	451.8	0.08652	39.1		
31	15.0	463.0	0.07974	36.9	31	15.1	460.2	0.07974	36.7		
32	15.0	463.0	0.07349	34.0	32	15.0	463.0	0.07349	34.0		
33	15.0	463.0	0.06774	31.4	33	15.0	463.0	0.06774	31.4		
34 37	15.0	463.0	0.06243	28.9	34	15.0	463.0	0.06243	28.9		
36	15.0 15.0	463.0	0.05754	26.6	35	15.0 15.0	463.0	0.05754	26.6		
37	15.0	463.0 463.0	0.05303 0.04888	24.6 22.6	36 37	15.0	463.0 463.0	0.05303	24.6 22.6		
38	15.0	463.0	0.04505	20.9	38	15.0	463.0	0.04888	20.9		
39	15.0	463.0	0.04152	19.2	39	15.0	463.0	0.04152	19.2		
40	15.0	463.0	0.03827	17.7	40	15.0	463.0	0.03827	17.7		
41	15.0	463.0	0.03527	16.3	41		463.0	0.03527	16.3		
42	15.0	463.0	0.03251	15.0	42	15.0	463.0	0.03251	15.0		
43	15.0	463.0	0.02996	13.9	43		463.0	0.02996	13.9		
44	15.0	463.0	0.02761	12.8	44	15.0	463.0	0.02761	12.8		
45	15.0	463.0	0.02545	11.8	45	15.0	463.0	0.02545	11.8		
46	15.0	463.0	0.02345	10.9	46			0.02345	10.9		
47	15.0	463.0	0.02162	10.0	47	15.0	463.0	0.02162	10.0		
48			0.01992	9.2	48			0.01992	9.2		
49			0.01836	8.5	49			0.01836	6.5		
50	15.0	463.0	0.01692	7.8	50	15.0	463.0	0.01692	7.8		
		_							• • • • • •		
	OF PRESE			,699.5					4318.7		
PAR	ITIAL PAYE	ENT FAC		.08646				C	.08646		
	RAGE AMMU			404 3							
*46	HAVE AREU	mi VALU	π.	406.3					373.4		

Table B 24G-Amnual Transportation Costs-Old River U. S. Salt: Lake Erie Ports

		٥	OITION (: LD RIVER	PRESENT			DJECT CO	DEN BINER	(8000) PRESENT	PRESE
MUCT	LIG CHINE		WORTH			TLID CHIN			MORTH	
EAR	DEPTH	COSTS	FACTOR			DEPTH	CO\$18		VALUE	
1	21.0	125.0	0.92166	115.2	1	21.9	125.0	0.92166	115.2	
2	20.6	126.2	0.84946	107.2	2	21.0	125.0	0.84946	106.2	
3	20.3	127.1	0.78291	99.5	3	21.0	125.0	0.78291	97.9	
4	19.9		0.72157		4		125.0	0.72157	90.2	
5	19.5		0.44505		5			0.46505		
4	19.1		0.61295		6			0.41295		
7	18.8		0.56493		7			0.56493		
•	18.4 18.0		0.52067		*			0.52067 0.47968		
10	17.7		0.44229	62.0	10			0.44229	55.3	
11	17.3		0.40764	\$8.3	11			0.40764	51.0	
12	16.9		0.37570	54.8	12			0.37570	47.0	
13	16.6		0.34627	51.3	13			0.34627		
14	16.2	151.4	0.31914	48.3	14	21.0	125.0	0.31914	39.9	
15	15.8	155.2	0.29414	45.7	15	21,0	125.0	0.29414	36.6	
16	15.4		0.27110	43.3	16	20.4		0.27110	34.2	
17	15.1		0.24986	40.7	17			0.24966	31.8	
18	15.0		0.23028	37.8	18	19.9		0.23028	29.6	
19	15.0		0.21224	34.8	19	19.5		0.21224	27.6	
20 21	15.0 15.0		0.19562	32.1	50	19.1 18.8		0.19562	25.7	
22	15.0		0.18029	29.6 27.3	21 22	18.4		0.18029 0.16617	24.0	
23	15.0		0.15315	25.1	23	18.0		0.15315	22.5 21.1	
24	15.0		0.14115	23.1	24	17.7		0.14115	19.8	
25	15.0		0.13009	21.3	25	17.3		0.13009		
26	15.0		0.11990	19.7	26	16.9		0.11990	17.5	
27	15.0	164.0	0.11051	18.1	27	16.6	148.2	0.11051		
28	15.0	164.0	0.10185	16.7	28	16.2	151.4	0.10185	15.4	
29	15.0	164.0	0.09387	15.4	29	15.8	155.2	0.09387	14.6	
30		164.0		14.2	30	15.4	159.6	0.06652	13.8	
31	15.0	164.0		13.1	31	15.1		0.07974	13.0	
32	15.0	164.0		12.1	25	15.0		0.07349	12.1	
33	15.0	164.0		11.1	33	15.0		0.06774	11.1	
34 35	15.0 15.0	164.0		10.2	34	15.0		0.06243	10.2	
56 56	15.0	164.0		9,4 8,7	35 36	15.0 15.0		0.05754	9.4	
37	15.0		0.04888	8.0	37	15.0		0.05303 0.04888	8.7 8.0	
58	15.0	164.0		7.4	38			0.04505	7.4	
39	15.0		0.04152	6.8	39	15.0		0.04152	6.8	
10	15.0	164.0		6.3	40	15.0		0.03827	6.3	
11	15.0	164.0		5.8	41	15.0		0.03527	5.8	
.2	15.0	164.0	0.03251	5.3	42	15.0	164.0	0.03251	5.3	
3	15.0	164.0 1	3.02996	4.9	43	15.0	164.0	0.02996	4.9	
4	15.0	164.0		4.5	44	15.0	164.0	0.02761	4.5	
			0.02545	4.2				0.02545	4.2	
.6			0.02345					0.02345	3.6	
.7			0.02162	3.5				0.02162	3.5	
-8 -9			3.01992 3.01836					0.01992	3.3	
0).01692	3.0 2.8				0.01836 0.01692	3.0	
-	13.0			2.8	30	17.0	· D= . U		2.8	
SUM	OF PRESE	NT WORTH		649.7					504.8	
	TEAL PAYM			08646					08646	
								٠.		

Table B 24H-Annual Transportation Costs-Old River U. S. Salt: St Lawrence Ports

·	11HOUT PE	DUECT CO	101110H (1	1000)	WITH PROJECT COMPITION (\$000)						
	0	D BINES	PRESENT	PRESENT		O.	D RIVE	PRESENT	PRESENT		
PRICT	LMD CHHIN	TRANS	WORTH	WORTH	PROJECT	TLUO CHIM	L TRANS	HTROM	MORTH		
YEAR	DEPTH	COSTS	FACTOR	VALUE	YEAR	DEPTH	20279	FACTOR	VALUE		
_											
1	21.0	309.0	0.92166	8.445	1	21.0	300.0		284.8		
z	20.6		0.84946	266.6	2	21.0		0.84946	262.5		
3	20.3	317.4	0.78291	248.5	3	21.0	309.0		241.9		
4	19.9	322.8		238.1	4	21.0	309.0		223.0		
5	19.5	330.0	0.66505	224.3	5	21.0	309.0		205.5		
6	19.1	337.2	0.61295	206.7	6	21,0	307.0		189.4		
7	18.8			194.3	7	21,0	309.0		174.6		
8 9	18.4	354.0	0.52067	184.3	8	21.0	309.0		160.9		
	18.0		0.47988	174.7	•	21,0	309.0		148.3		
10 11	17.7	373.3	0.44229	165.1	10	21.0		0.44229	136.7		
12	17.3	385.7	0.40764	157.2	11	21.0	309.0		126.0		
13	16.9	398.7	0.37570	149.8	12	21.0		0.37570	116.1		
	16.6		0.34627	141.9	13	21.0	309.0		107.0		
14 15	16.2		0.31914	135.5	14	21.0		0.31914	98.6		
16	15.8		0.29414	129.8	15	21.0	309.0		90.9		
17	15.4		0.27110	124.6	16	20.6		0.27110	85.1		
15	15.1		0.24986	118.3	17	20.3		0.24986	79.3		
19	15.0		0.23028	110.1	18	19.9		0.23028	74.3		
20	15.0 15.0		0.21224	101.5	19	19.5	330.0		70.0		
21	15.0		0.19562 0.18029	93.5 86.2	20	19.1		0.19562	66.0		
55	15.0		0.16617	79.4	21	18.8	344.0	0.18029	62.0		
23	15.0		0.15315	73.2	22 23	18.4 18.0	354.0	0.16617	\$8.8		
24	15.0		0.14115	67.5	24	17.7		0.14115	55.7 52. 7		
25	15.0		0.13009	62.2	85	17.3	385.7		50.2		
26	15.0		0.11990	57.3	56	16.9	398.7		47.8		
27	15.0		0.11051	52.8	27	16.6	409.8	0.11051	45.3		
28	15.0		0.10185	48.7	28	16.2		0.10185	43.2		
29	15.0		0.09387	44.9	29	15.8	441.2		41,4		
30	15.0		0.08652	41.4	30	15.4		0.08652	39.8		
31	15.0		0.07974	38.1	31	15.1	473.4	0.07974	37.7		
32	15.0	478.0	0.07349	35.1	32	15.0	478.0		35.1		
33	15.0	478.0	0.06774	32.4	33	15.0	478.0		32.4		
34	15.0	478.0	0.06243	29.8	34	15.0	478.0	0.06243	29.6		
35	15.0	478.0	0.05754	27.5	35	15.0	478.0	0.05754	27.5		
36	15.0	478.0	0.05303	25.3	36	15.0	476.0	0.05303	25.3		
37	15.0	478.0	0.04888	23.4	37	15.0	478.0	0.04888	23.4		
38	15.0	478.0	0.04505	21.5	38	15.0	478.0	0.04505	21.5		
36	15.0	478.0	0.04152	19.8	39	15.0	478.0	0.04152	19.8		
40	15.0	478.0	0.03827	18.3	40	15.0	478.0	0.03827	18.3		
41	15.0	478.0	0.03527	16.9	41	15.0	478.0	0.03527	16.9		
42	15.0		0.03251	15.5	42	15.0	478.0	0.03251	15.5		
43	15.0		0.02996	14.3	43	15.0	478.0	0.02996	14.3		
44	15.0	478.0	0.02761	13.2	44	15.0	478.0	0.02761	13.2		
45	15.0	478.0		12.2	45	15.0	478.0	0.02545	12.2		
46	15.0	478.0		11.2	46	15.0	478.0	0.02345	11.2		
47	15.0	478.0		10.3	47	15,0	478.0	0.02162	10.3		
48	15.0	478.0		7.5	48			0.01992	9.5		
49	15.0	478.0		8.8	49			0.01836	8.8		
50	15.0	478.0		8.1	50	15.0	478.0	0.01692	6.1		
~ =		N4 1-00-		16. 7							
	OF PRESE			454.3					1828.7		
FAR	PATE			08646					08646		
44	RACE ANNU	M1 WA:1#		385.1				•	77. 0		
-46				۱ . زیج					331.0		

Table B 25A-Annual Transportation Costs-Old River/Cuyahoga River U.S. Cement- Docks With .37 Feet Of Shcaling Per Year

					IIN MOTEC	r countiti	OH (600	0)
	WITHOUT PROJECT (MOITION ((6000)	•	THE PROJEC	RIVER	PRESENT	
	FORE BIVER	PRESENT	PRESENT	****	FAD CHARE		MORTH	MORTH
PROJECT	LLO CHINE TRANS	WORTH	MORTH	TEAR	DEPTH	COSTS	FACTOR	VALUE
YEAR	DEPTH COSTS	FACTOR	VALUE	16				
			2327.2	1	23.0	2,525.0	0.92166	2327.2
1	23.0 2,525.0	0.94100	2155.4	2	23.0	2,525.0	0.84946	2144.9
5	22.6 2,537.4 22.3 2,546.7	0.00700	1993.8	3	23.0	2,525.0	0.78291	1976.8
3	21.9 2,562.4	0.72157	1867.4	4	25.0	2,525.0	0.72157	1822.0
4	21.5 2,588.0	0.44505	1738.2	5	23.0	2,525.0	0.66505	1679.2 1547.7
5	21.1 2,613.6	0.41295	1602.0	6	25.0	2,525.0	0.61297	1426.4
6	20.8 2,642.4	0.54493	1492.9	7	23.0	2,525.0	0,56473	1314.7
	20.4 2,687.8	0.52067	1399.5	8	23.0	2,525.0	0.47968	1211.7
` ,	20.0 2,733.0	0.47968	1311.5	9	23.0	2,323.0	0.44229	1116.8
10	19.7 2,783.7	0.44229	1231.2	10	23.0	2,323.0	0.40764	1029.3
11	19.3 2,851.3	0.40764	1162.3	11	25.0	2 525.0	0.37570	948.6
12	18.9 2,924.1	0.37570	1098.6	12 13	23.0	2 525.0	0.34627	874.3
. 13	18.6 2,990.4	0.34627	1035.5	14	23.0	2.525.0	0.31914	605.8
14	18.2 3,078.	8 0.31914	982.6	15		2.525.0	0.29414	742.7
15	17.6 3,178.	0.29414	934.9	16	22.6	2.537.4	0.27110	687.9
16	17.4 3,289.	2 0.27110	891.7	17	_	2,546.7	0.24986	636.3
17	17.1 3,372.	3 0.24986	842.6 807.4	18	21.9	2,562.4	0.23028	590.1
18	16.7 3,506.	2 0.23028	774,2	19	21.5	2,588.0	0.21224	549.3
19	16.3 3,647.	8 0.21224		20	21.1	2,613.6	0.19562	511.3
\$0	16.0 3,754.	0.19304	710.7	21	20.8	2,642.6	0.18029	476.4
₹1		0.15027	686.3	27	20.4	2,687.8	0.16617	446.6
22		0 0 15315	632.5	2.	3 20.0	2,733.0	0.15315	418.6
23		0 0.14115		24	19.7	2,783.7	0.14115	392.9
24		0 0.13009	537.3	25	19.3	2,851.3	0.13009	370.9
2:		0 0.11990	495.2	20			0.11990	
2:		0 0.11051	456.4	Z		2,990.4		
21		0 0.10185	420.6	2:		3,078.6	0.10185	298.4
2		0.09387	387.7	2		3,1/0.4	0.09387	284.6
3	0 15.0 4,130.	.0 0.0865	2 357.3			3,207.6	0.07974	268.9
3	1 15.0 4,130	.0 0.07974	329.3		_	1 504 2	0.07349	257.7
3	2 15.0 4,130	.0 0.0734	9 303.5		_	3 447.5	0.06774	247.1
3	3 15.0 4,130	.0 0.0677	279.7		3 16.3 4 16.0	3 754.0	0.06243	234.4
3	4 15.0 4,130	.0 0.0624	3 257.8		5 15.6	3.942.0	0.05754	226.8
3	5 15.0 4,130	.0 0.0575	4 237.6		6 15.2	4,130.	0.0530	219.0
3	6 15.0 4,130	.0 0.0530	3 219.0		7 15.0	4,130.	0.0488	3 201.9
3	7 15.0 4.130	.0 0.0488	8 201.9 5 186.0		15.0	4,130.	0.0450	186.0
	15.0 4,130	0.0450	2 171.5		15.0	4,130.	0 0.0415	2 171.5
		0.0415	-		15.0	4,130.	0.0382	7 158.0
		0.0362	7 145.7		61 15.0	4,130.	0 0.0352	7 145.7
		0.0336	1 134.2	4	15.0	4,130.	0.0325	1 134.2
		0.0299			15.1	4,130.	0.0299	6 125.7
		0.0276			44 15.0	4,130.	0 0.0276	1 114.0
	15.0 4,130	1.0 0.0254	5 105.1		45 15.1	0 4,130.	0 0.0254	5 105.1 5 96.9
	6 15.0 4,130	0.0234	5 96.9		46 15.1	0 4,130.	0 0.0234	2 69.3
	47 15.0 4,130	0.0216	52 89.3		47 15.	0 4,130.	0 0.0216	
	48 15.0 4,130	0.0 0.019	92 82.3		LB 15.	0 4,130.	0 0.0199 0 0.0163	6 75.8
	49 15.0 4,130	0.0 0.018	36 75.8		49 15.	0 4,130. 0 4.120	0.016	_
	50 15.0 4,13	0.0 0.016	92 69.9		50 15.	₩ 6 ,130.		
								30634.3
	SUM OF PRESENT	WORTHS	35031.6					0.08646
	PARTIAL PAYMEN	T FACTOR	0,08646					
								2666.0
	AVERAGE ANNUAL	VALUE	3,028.9					

Table B 25B-Annual Transportation Costs-Old River/Cuyahoga River
Canadian Cement- Docks With .37 Feet Of Shoaling Per
Year

	-	OJECT (MOITION	(8000)		WITH PROJ	ECT COM	D1110H	(8000)
			PRESENT	PRESENT		LOVER	EIVER	PRESENT	PRESENT
PROJECT	FRD CHINEF	TRANS	WORTH	MORTH	PROJECT	FFE CHANT	TRANS	MORTH	MORTH
YEAR	DEPTH	COSTS	FACTOR	YALUE	YEAR	DEPTH	COSTS	FACTOR	MALUE
					4			0.92146	449.8
1	23.0		0.92166		1	23.0		0.84946	414.5
2	22.6		0.84946		2	23.0		0.78291	362.1
3	22.3		0.78291		3 4	23.0 23.0		0.72157	
4	21.9		0.72157		5	23.0		0.44505	
5	21.5		0.66505	353.5 325.8	6	23.0		0.61295	
6	21.1		0.61295		7	23.0		0.56493	
7	20.8		0.56493		8	23.0		0.52067	254.1
8	20.4		0.47968	269.7	9	23.0		0.47988	
. 9	20.0 19.7		0.44229		10	23.0		0.44229	215.8
10	19.7		0.40764	238.2	11	23.0		0.40764	
11 12	18.9		0.37570		12	23.0		0.37570	183.3
. 13	18.6		0.34627		13	23.0		0.34627	
14	18.2		0.31914	_	14	23.0		0.31914	
15	17.8		0.29414	188.5	15	23.0		0.29414	143.5
16	17.4		0.27110		16	22.6		0.27110	134.7
17	17.1		0.24986		17	22.3		0.24986	
18	16.7		0.23028		18	21.9		0.23028	
19	16.3		0.21224		19	21.5	522.0	0.21224	110.8
20	16.0		0.19562		20	21.1		0.19562	
21	15.6		0.18029		21	20.8		0.18029	97.3
22	15.2		0.16617		22	20.4	550.8	0.16617	91.5
23	15.0		0.15315		23	20.0	562.0	0.15315	86.1
24	15.0		0.14115		24	19.7	571.6	0.14115	80.7
25	15.0		0.13009		25	19.3	584.4	0.13009	76.0
26	15.0		0.11990	94.0	26	18.9	597.8	0.11990	71.7
27	15.0		0.11051	86.6	27	18.6	609.2	0.11051	67.3
28	15.0		0.10185	79.8	28	18.2	624.4	0.10185	43.6
29	15.0		0.09387	73.6	29	17.8	641.0	0.09387	60.2
30	15.0		0.08652	67.8	30	17.4	659.0	0.08652	57.0
31	15.0		0.07974	62.5	31	17.1	672.5	0.07974	53.6
32	15.0		0.07349	57.6	32	16.7	693.2	0.07349	\$0.9
33	15.0		0.06774	53.1	33	16.3	714.8	0.06774	48.4
34	15.0		0.06243	48.9	34	16.0	731.0	0.06243	45.6
35	15.0		0.05754	45.1	35	15.6	757.4	0.05754	43.6
36	15.0	783.8	0.05303	41.6	36	15.2	783.8	0.05303	41.6
37	15.0		0.04888	38.3	37	15.0	783.8	0.04888	38.3
38	15.0		0.04505	35.3	38	15.0	783.8	0.04505	35.3
39	15.0		0.04152	32.5	39	15.0	783.8	0.04152	32.5
40	15.0		0.03827	30.0	40	15.0	783.8	0.03827	30.0
41	15.0		0.03527	27.6	41	15.0	783.8	0.03527	27.6
42	15.0	783.8	0.03251	25.5	42	15.0	783.8	0.03251	25.5
43	15.0	783.8	0.02996	23.5	43	15.0	783.8	0.02996	23.5
44	15.0	783.8	0.02761	21.6	44	15.0	783.8	0.02761	21.6
45	15.0	783.8	0.02545	19.9	45	15.0	783.8	0.02545	19.9
46	15.0	783.8	0.02345	18.4	46	15.0	783.8	0.02345	18.4
47	15.0		0.02162		47	15.0	783.8	0.02162	16.9
48	15.0	783.8	0.01992	15.6	48	15.0	783.8	0.01992	15.6
49	15.0		0.01836	14.4	49	15.0	783.8	0.01836	14.4
50	15.0		0.01692	13.3	50	15.0	783.8	0.01692	13.3
									•••••
	SUM OF PRES	ENT WO	RTHS	6941.7					6013.8
	PARTIAL PAY	MENT FA	ACTOR	0.08646					0.08646
				•••••					•••••
	VERAGE ANNU	WE WALL	Æ	600.2					\$20.0

c. Average Annual Transportation Benefits.

The difference in average annual transportation costs between the "Without Project" and "With Project" condition are the benefits attributable to implementation of the new dike disposal facility (Table B26.) Benefits have been aggregated by Harbor area: Outer Harbor, Lower River/Old River, Middle River and Upper River. Total Average Annual Benefits for the four major bulk commodities are \$7,896,500. These average annual benefits reflect August 1991 price levels.

Table B26- Average Annual Transportation Benefits For Site 10B-Iron Ore, Limestone, Salt And Cement

•	OUTER HARBOR (\$000)	LOWER RIVER (\$000)	MIDDLE RIVER (\$000)	UPPER RIVER (\$000)	TOTAL BENEFITS (\$000)
IRON ORE BENEFITS					
WITHOUT PROJECT AVERAGE ANNUAL TRANSPORTATION COSTS WITH PROJECT AVERAGE ANNUAL TRANSPORTATION COSTS	19,044.4	559.5			29,697.2 25,774.1
		71.5		1,515.1	
LIMESTONE BENEFITS	-•			•	•
WITHOUT PROJECT AVERAGE ANNUAL TRANSPORTATION COSTS		8,139.0	4,048.1	2,865.2	15,052.3
WITH PROJECT AVERAGE ANNUAL TRANSPORTATION COSTS		6,795.0	3,459.5	2,174.5	12,429.0
		1,344.0	588.6	690.7	2,623.3
SALT BENEFITS					
CANADIAN					
WITHOUT PROJECT ANNUAL TRANSPORTATION COSTS		3,482.2			3,482.2
WITH PROJECT ANNUAL TRANSPORTATION COSTS		3,003.7			3,007.3
		/70.6			/70.5
DOMEST1C		478.5			478.5
WITHOUT PROJECT ANNUAL TRANSPORTATION COSTS		3,449.2			3,449.2
WITH PROJECT ANNUAL TRANSPORTATION COSTS		3,023.8			3,023.8
		428.5			428.5
CEMENT BENEFITS					
CANADIAN					
WITHOUT PROJECT ANNUAL TRANSPORTATION COSTS		600.2			600.2
WITH PROJECT ANNUAL TRANSPORTATION COSTS		520.0			520.0
		80.2			80.2
DOMESTIC					
WITHOUT PROJECT ANNUAL TRANSPORTATION COSTS		3,028.9			3,028.9
WITH PROJECT ANNUAL TRANSPORTATION COSTS		2,666.0			2,666.0
		362.9			362.9
TOTAL BENEFITS					
IRON ORE	2,336.5	71.5		1,515.1	•
LIMESTONE			588.6	690.7	-
SALT		907.0			907.0
CEMENT		443.1			443.1
					7 90/ 6
	۲,۵۵۰,۶	2,765.6	200.6	2,205.8	7,896.5

B4 AVERAGE ANNUAL COSTS

a. Average Annual Construction Costs.

Average annual dike construction costs were developed for site 10 B. (Table B 27). Project first costs included such components as rubblemound dike wall, clay closure wall, and storm sewer modifications. Also included in first costs were lands; planning, engineering and design; construction management and Contingency costs. Construction costs were \$32,880,000. These construction costs reflect August 1991 price levels.

Interest During Construction (IDC) was calculated based on an annual interest rate of 8.50 percent, a three year construction length and monthly compounding. IDC was calculated on project first costs after subtracting out Land costs. IDC was added to plan first costs to arrive at plan investment costs.

Site 10 B- 15 Year Life

Table B 27- Summary Of Average Annual Costs-Site 10B.

	orce to b to rear bit
CDF Construction Sewer Extensions	\$28,900,000 \$ 3,980,000
Total First Cost Of Construction Interest During Construction (2)	
Total Investment Cost	\$37,424,500
Average Annual Costs Interest (3) Amortization (3) Annual Dike Maintenance Average Annual Dredging Costs	\$ 3,181,100 \$ 54,800 \$ 20,000 \$ 1,155,900
Total Average Annual Costs	\$ 4,411,800

- (1) Total First Cost Of Constuction reflects August 1991 price levels.
- (2) Interest During Construction was computed using a three year construction length, a 12 month construction season, monthly compounding and an 8.50 percent annual interest rate.
- (2) Interest and amortization was computed using a 50 year project life and an 8.50 percent annual interest rate.

These investment costs were then converted to average annual equivalent costs based on an annual interest rate of 8.50 percent, and a 50 year project life.

b. Average Annual Maintenance Costs

Annual CDF maintenance costs for Site 10B were added to Average Annual Costs. Benefits attributable to the implementation of Site 10B will not be realized unless shoaled materials are removed from the Federal channels and placed into the structure. Therefore dredging costs required to remove shoal material from the channels need to be accounted for if transportation benefits are to be claimed.

Annual channel dredging costs were assumed to continue under "with project" conditions from project year 1 to project year 15. No dredging costs were assigned to project years 16 through 50. The time stream of annual dredging costs was converted to an average annual basis using a 50 year project life and an 8.50 percent annual interest rate.

c. Total Average Annual Costs

Total Average Annual Costs are the sum of the amortized construction costs and average annual maintenance costs. Total average annual costs for site 10B are \$ 4,411,800(Table B 27). These average annual costs are based upon August 1991 price levels, an 8.50 percent annual interest rate, and a 50 year project life.

B5. BENEFIT COST SUMMARY

a. Benefit Cost Summary

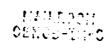
Table B28 presents average annual benefits, average annual costs, and net benefits for site 10B. This site has average

Table B28-Summary Of Benefits And Costs- Site 10 B.

Average Annual Benefits (1) Average Annual Costs (1)	\$7,896,500 \$4,411,800
Net Benefits	3,484,700
Benefit To Cost Ratio	1.78

(1) Average Annual Benefits and Average Annual Costs were computed based upon an 8.5 percent annual interest rate, a 50 year project life and August 1991 price levels.

annual benefits of \$ 7,896,500, average annual costs of \$ 4,411,800, net benefits of \$ 3,484,700 and a benefit to cost ratio of 1.8.


APPENDIX C

U.S. FISH AND WILDLIFE SERVICE COORDINATION ACT REPORT

United States Department of the Interior

Fish and Wildlife Service Reynoldsburg Field Office 6950-H Americana Parkway Reynoldsburg, Ohio 43068-4115

5 has 93 19 15

In Reply Refer to:

COMM: 614/469-6923 FAX: 614/469-6919 March 31, 1993

Colonel John W. Morris
District Engineer
Buffalo District, Corps of Engineers
1776 Niagara Street
Buffalo, New York 14207

Attention: Len Bryniarski

Dear Colonel Morris:

This is our Final Fish and Wildlife Coordination Act Report on a proposed confined disposal facility (CDF) Site 10B at Cleveland, Cuyahoga County, Ohio. The report has been prepared under authority of the Fish and Wildlife Coordination Act (48 stat. 401, as amended 16 U.S.C. 661 et seq.), for the Buffalo District Corps of Engineers per agreement No. NCB-1A-92-OBEG, dated December 12, 1991.

This report has been reviewed by the Ohio Division of Wildlife. Their concurrance letter dated March 23, 1993, is attached.

The Cleveland Harbor area, protected by breakwaters, is five miles long and 1,600 to 2,400 feet wide for a total area of approximately 1,300 acres. Improved and dredged channels are maintained in the lower 5.8 miles of the Cuyahoga River, the Old River Channel, and the Outer Harbor. The Lake Approach Channel is maintained at a depth of 29 feet. The Outer Harbor is 28 feet deep up to the mouth of the Cuyahoga River. The Lower Cuyahoga River Channel is 27 feet deep up to the junction of Old River and 23 feet deep upstream to mile 5.8. In general, water quality has been improving over the last 15 years; but most of the sediments are still highly to moderately polluted and unsuitable for open lake disposal.

The proposed CDF (Site 10B) will be attached to a former disposal facility on the east and existing Burke Airport fill on the south (see Plate 1). A rubblemound dike will be constructed on the north side (4,500 feet) and west side (550 feet) to encompass an area of approximately 68 acres. The dike wall will be constructed with various sizes of rock ranging from that passing through a #200 sieve to 2.5 ton. A clay closure wall, approximately 5 feet high, will be constructed along the adjacent length of Burke Lakefront Airport. This wall will be removed when the CDF is full and the fill has

consolidated. The water depths in the area of the proposed CDF vary from about 18 feet to 25 feet.

The navigation channel which will be adjacent to the north dike wall is maintained at a depth of 28 feet. Sediments in the proposed disposal area are probably fine sands, clay, gravel and some organic material. This assumption is based on sediments we found at the proposed CDF site (Burke East) just to the east of existing filled disposal facility (Dike 12).

FISH AND WILDLIFE RESOURCES

Aquatic resources of Cleveland Harbor are many and varied. Species composition has changed over the years towards more pollution tolerant species due to the overall reduction in water quality. However in recent years, this trend may have stabilized or improved slightly from conditions in the mid 1970's.

Approximately 50 species of benthic microinvertebrates (primarily oligochaetes) have been reported in the Cleveland nearshore zone (Pliodzinskas, 1978). We have not conducted any benthic studies at the proposed site. However, we collected sediment samples at the proposed east basin CDF (Burke East) site in 1988 and the results of that study were provided to the Buffalo District Corps of Engineers in our Biological Report dated May 26, 1989. The location of the sampling sites is indicated on Plate 2 while the results of that benthic study are provided in Table 1. More details are contained in the Biological Report. We believe that many of these organisms would also be found at Site 10B. Also in 1986, the Buffalo District Corps of Engineers contracted a study of sediments and macroinvertebrates at Edgewater Park and Burke Lakefront Airport. The contractor was Aqua Tech Environmental Consultants Incorporated and their report "The Analysis of Sediments from Cleveland Harbor", technical Report #G0176-11, was provided in August, 1986. Table III from that report and the location of the Burke Lakefront sampling sites is attached as Appendix 1.

Fish species in and adjacent to Cleveland Harbor consist of numerous forage and game species. The forage base is dominated by shad, spottail shiner and emerald shiner. Sport fish include white bass, yellow perch, walleye, rock bass and catfish. In recent years, the number of white perch in Cleveland, as well as Lake Erie, has greatly increased to a point where they may be one of the most abundant species.

In the early 1970's Dr. Andrew White conducted various surveys in the Cleveland area (White et.al.). Table 2 lists those species collected as fry or young-of-year in Cleveland Harbor during the years 1972-74. Table 3 provides a list of fish species collected in Cleveland Harbor and adjacent marinas from 1972 to 1974.

In 1986 we set two variable mesh gill nets adjacent to Burke Lakefront Airport at the proposed "Site 10" CDF, which is the same location as the currently proposed Site 10B. The results of that survey are presented in Table 4. Also in 1988 and 1989, we conducted gill net surveys at the Burke East proposed CDF. The results of those surveys are also presented in Table 4. We present this data because we believe that fish populations at Site 10B would be comparable to those found at Site 10 in 1986 and at Burke East in 1988 and

1989. White et.al. collected a total of 47 species in Cleveland Harbor and adjacent marinas. Our surveys at Burke East and Site 10 found only about half as many species. Part of the difference can be attributed to the fact that we only used gill nets while White used a variety of sampling methods.

Vegetation in the project area of Site 10B is limited. There are a few small trees along the edge of Burke Lakefront Airport, but most of the area contains grasses and herbs. There is also some algae attached to the riprap along Burke Lakefront Airport. Wildlife resources in the project area consists primarily of avian species. In April 1989 we observed the following birds: Bonaparte's, herring and ring-billed gulls, common merganser, scaup, mallards, bufflehead, woodduck and common tern. On the edge of the filled CDF, we observed Canada geese, common flicker, American robin, red-winged blackbird and great blue heron. In May 1989 we also observed black crowned night herons, barn swallows, and chimney swifts. We have made no surveys in the area for upland species, although we expect to find small mammals, and reptiles and probably pheasants and rabbits on the Burke Lakefront Airport property.

ENDANGERED SPECIES COMMENTS: The proposed project lies within the range of the Indiana bat and piping plover, Federally listed endangered species. Due to type of habitat in the project area, the project, as proposed, will have no impact on these species. This precludes the need for further action on this project as required by the 1973 Endangered Species Act, as amended. Should the project be modified or new information become available that indicates listed or proposed species may be affected, consultation should be initiated.

DISCUSSION AND RECOMMENDATIONS

We have been discussing, commenting, and preparing reports on various proposed CDF's in the Cleveland area since the currently used CDF (Dike 14) was constructed. The Corps has borrowed some time for the need for a new CDF by raising the dike walls of Dike 14. By raising these dike walls, Dike 14 will be capable of holding an additional 3-5 years of dredged material. This is the second time we have looked at a proposed CDF at Burke Lakefront Airport. The first proposal was known as Site 10. We prepared an April 23, 1987 Draft Fish and Wildlife Coordination Act Report on this and other proposed sites in the Cleveland Harbor area.

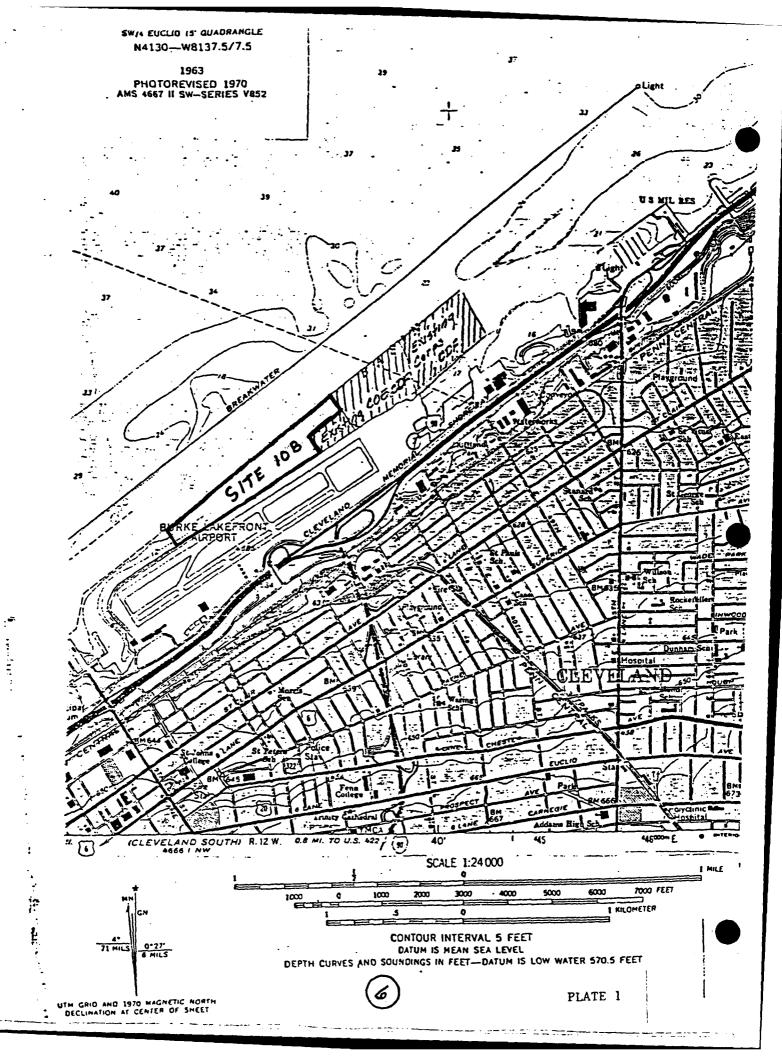
Over the years, we have requested that the Corps consider using upland disposal sites for dredged material. We have also recommended use of dredged material as fill for industrial, transportation or commercial projects in the Cleveland area. For the last few years, some of the material dredged from the uppermost portion of the navigation channel has been clean enough to use as beach nourishment or introduced into the littoral drift.

In our opinion, the most economical and environmentally sound solution to maintenance dredging and disposal of dredged material is to keep the sediments out of the Cuyahoga River navigation channel. To this end, we are willing to assist the corps or any other Federal, state or local agency in upland erosion control programs or projects.

In our opinion, the implementation of an upland and floodplain erosion control program are the type of long range planning which should be implemented. By implementation of such a program, the need for costly, habitat destroying inwater CDF's could be eliminated or greatly reduced in the future. By investing some time and money now, the government could eliminate or reduce the maintenance dredging cost in future years. Along with stricter pollution control standards, the sediments which would remain and need to be dredged could be classified as non-polluted or moderately polluted and open lake disposal would be appropriate. If action is not taken in the near future, the cost of controlling the erosion and confining the polluted sediments will only increase. Also, if the source of erosion is not controlled, at least partially, the immediate problem of removing sediments is perpetuated.

The construction of the proposed CDF in Cleveland Harbor would require mitigation for the loss of 68 acres of deep water aquatic habitat. Replacement of the loss of deepwater habitat with in-kind mitigation would not be practical. Therefore, we recommend out-of-kind mitigation measures to enhance spawning habitat in Cleveland Harbor be initiated. One spawning habitat technique would consist of designing into the proposed CDF dike a spawning shelf. This shelf constructed on the waterward side of the dike should be 4+/- feet wide and be located about 4-8 feet below normal water level. Preferably, portions of the shelf would be constructed at 4-6 and 6-8 feet to allow various species spawning sites at various water levels. We envision the shelf being constructed of larger stone and then capped with a layer of gravel. The gravel may have to be replenished, if ice conditions or wave action moves the gravel. Another mitigation measure to consider would be to locate shallow water areas in or near Cleveland Harbor that could be developed into spawning areas with the addition of gravel substrate. In both cases, the mitigation spawning areas would need to be maintained for the life of the project.

We appreciate this opportunity to provide this report and look forward to additional discussion and planning meetings regarding the proposed mitigation measures discussed above.


Sincerely,

Kent E. Kroonemeyer

Supervisor

cc: DOW, Wildlife Environmental Section, Columbus, OH
ODNR, Office of Realty and Land Management, Columbus, OH
Ohio EPA, Water Quality Monitoring, Attn: G.Hesse, Columbus, OH
US EPA, Office of Environmental Review, Chicago, IL

- Aqua Tech Environmental Consultants, Inc. "The Analysis of Sediments from Cleveland Harbor," Cleveland, Ohio. Contract #DACW49-86-D001 Del. 0013. Technical Report #G0176-11, August, 1986.
- Pliodzinskas, A.J., 1979. "A General Overview of Lake Erie's Nearshore Benthic Macroinvertebrates." Center for Lake Erie Area Research: Ohio State University, Columbus, Ohio. Report 126. 83 pp.
- U.S. Army Corps of Engineers (Buffalo District). Cuyahoga River, Ohio Restoration Study, Executive Summary, August, 1986.
- U.S. Fish and Wildlife Service, July 23, 1986. "Planning Aid Letter on Selection of a Confined Disposal Facility at Cleveland, Cuyahoga County, Ohio," Columbus, Ohio.
- U. S. Fish and Wildlife Service (Ecological Service Field Office).
 "Biological Report on East Basin Confined Disposal Facility," Cleveland Harbor, Cuyahoga County, Ohio. May 26, 1989, Reynoldsburg, Ohio.
- White, A.M., M.B. Troutman, E.J. Foell, M.P. Kelty, and R. Geby. 1975.
 "Water Quality Baseline Assessment for the Cleveland Area." Lake Erie,
 Vol. 11-Fishery. U. S. Environmental Protection Agency: Region V.
 Chicago, Illinois. Report EPA-905/9-75-001. 181 pp.

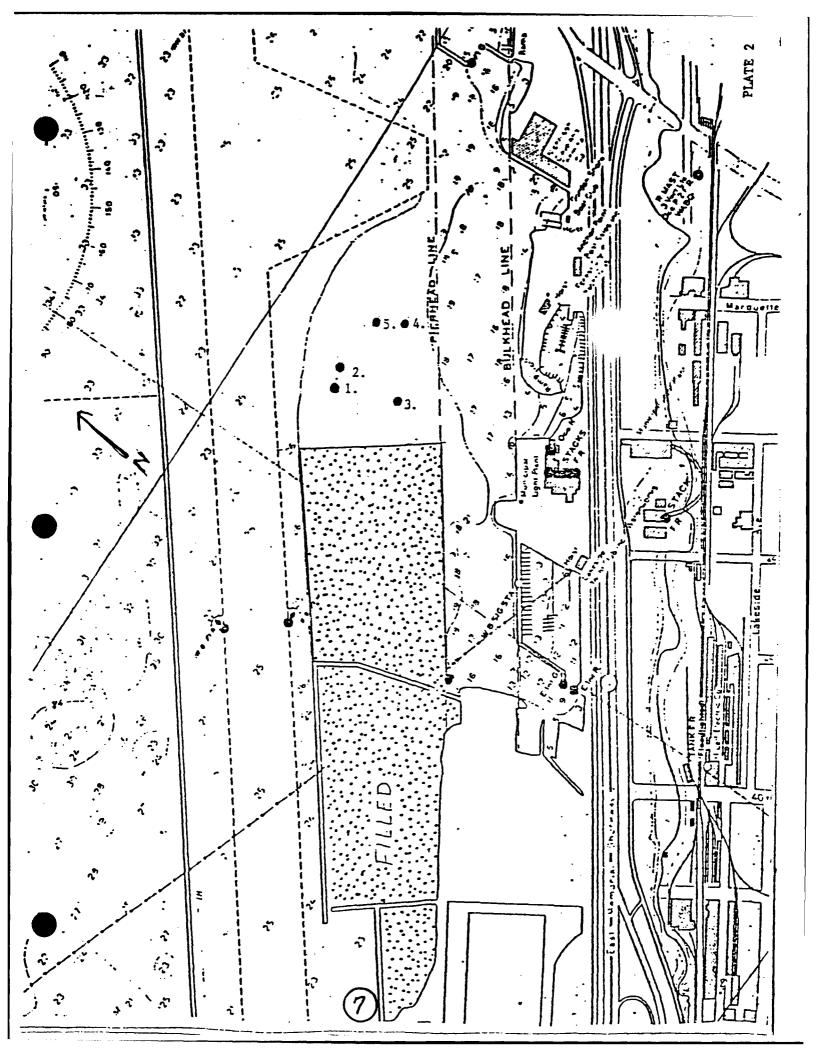


TABLE 1. AVERAGE MUNBER OF ORGANISMS PER SAMPLE, BY STATION

ENSECTA	STATION 1	STATION 2	STATION 3	STATION 4	STATION 5
CHIRONOMIDAE					
Procladius Sp. Chironomus Sp.	2.33	3.57	5.67 6. 67	10.67 1.33	15 4.55
CRUSTACEA GAMMARIDAE Gammarus Sp					0.33
·					
NOLLUSCA SPHAERIIDAE	7	9.3	11.33	22.33	22.33
ANNELIDA HIRUDINER		0.32			0.47
ANNELIDA					
NAIDIDAE	,			•	
Arcteonais lomondi	0.23				0.5
Dero sp.			1.57		
Dero nivea	7.57	5.ä7		6.67	ĮĢ
Nais simplex				1	
Nais sp.				3	
Pristina sp.				i	
Pristina osberni	5.33	17	6.33	11.67	2
Pristina sipa	3.33	1.33			6.5
Specaria josinea	1.57	á	3	0.57	
TUBIFICIDAE					
Acidrilus lianobius	i	0.33	1.33	2.47	9
Aulodrilus pigueši	10	19	1.55	10.23	12.3
Aulodrilus pluriseta	0.33		é.33	0.57	0.5
Lianodrilus carvix	2.37	9.57	3.37	12	10.5
Limnodrilus clagaradianus		0.33			
Lianodrilus hoffaeisteri	3.56	1.33	2	10.37	á.E
Lienodrilus maumeensis		1.33	4.33	0.33	i
Lionodrilus udakemianus	1				
Peioscolex sp.	1				
Potamothrix vejdovskyi	2.33	3.47	5	12	5
Quistadrilus aultisetosus	1.33				
impat. w/ hair setae			1		
immat. w/o hair satae	91.3	163	74.57	64.57	5 7
TOTAL ORGANISHS	143.29	192.96	129.56	172.68	171.99
TOTAL OLIGOCHAETES	133.95	180.55	110.99	138.35	129
OLIGOCHAETES / SQ. NETER	5768	7779	4779	5 957	5555

Table 2. Species of Fishes Collected as Fry or Young-of-the-Year in Cleveland Harbor, 1972-1974*

Species	Abundance**
Alewife	Abundant
Gizzard shad	Abundant
Rainbow smelt	Abundant
Quillback	Rare
White sucker	Uncommon
Common carp	Common
Goldfish	Common
Golden shiner	Abundant
Longnose dace	Rare
Emerald shiner	Abundant
Spottail shiner	Uncommon
Fathead minnow	Rare
Bluntnose minnow	Common
Trout-perch	Rare
Brook silverside	Rare
White bass	Uncommon
Rock bass	Uncommon
Largemouth bass	Rare
Green sunfish	Uncommon
Bluegill	Common
Pumpkinseed	Abundant
Yellow perch	Common
Logperch	Rare
White crappie	Uncommon

^{*} from White et al. 1975

^{**} Abundance of each species depicted as a relative term

Table 3. Relative Abundance of Fishes Collected in the Cleveland Harbor and Adjacent Marinas (Revised July 1974)*

Species	No. Collected	% of Total
Longnose gar	1	0.01 %
Alewife	92	0.85
Gizzard shad	2,525	23.43
Chinnok salmon	9	0.08
Coho salmon	42	0.39
Rainbow trout	2	0.02
Rainbow smelt	323	3.00
Northern pike	15	0.14
Common carp	64	0.59
Goldfish	97	0.90
Golden shiner	393	3.65
Longnose dace	1	0.01
Creek chub	1	0.01
Blacknose dace	1	0.01
Emerald shiner	4,092	37.97
Striped shiner	1	0.01
Spottail shiner	903	8.38
Spotfin shiner	6	0.06
Sand shiner	33	0.31
Mimic shiner	6	0.06
Fathead minnow	1	0.01
Bluntnose minnow	74	0.69
Stoneroller	2	0.02
Quillback	1	0.01
Black redhorse	1	0.01

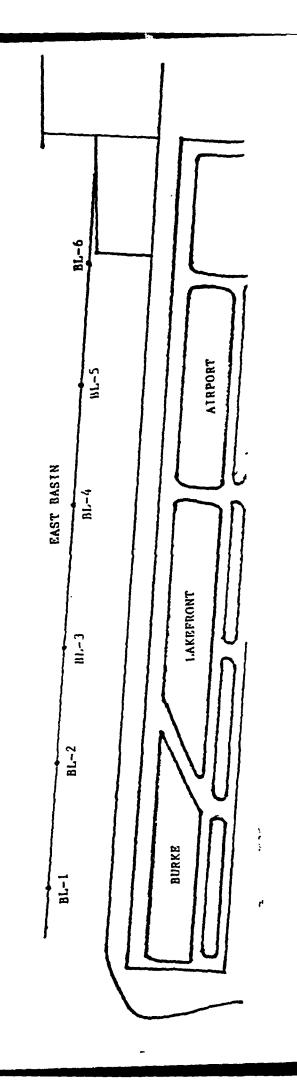
Table 3. (continued) Relative Abundance of Fishes Collected in the Cleveland Harbor and Adjacent Marinas (Revised July 1974)*

Species	No. Collected	Z of Total
Golden redhorse	2	0.02
Shorthead redhorse	1	0.01
White sucker	89	0.83
Channel catfish	2	0.02
Brown bullhead .	23	0.21
Black bullhead	14	0.13
Stonecat	13	0.12
Trout-perch	153	1.42
Brook silverside	3	0.03
White bass	223	2.07
White crappie	80	0.74
Black crappie	11	0.10
Rock bass	5	0.05
Largemouth bass	3	0.03
Warmouth	1	0.01
Green sunfish	3	0.03
Bluegill	4	0.04
Pumpkinseed	34	0.32
Walleye	2	0.02
Yellow perch	1,254	11.64
Logperch	1	0.01
Freshwater drum	170	1.58
TOTALS	10,777	100.05 %
47 species		

⁴⁷ species

^{*} from White, et al., 1975

Table 4. Species and number of fish collected by gill net surveys for the Burke Lakefront (May and Sept 1986) and Burke East (Oct and Nov 1988, Apr and May 1989) proposed Confined Disposal Facilities at Cleveland Harbor, Cuyahoga County, Ohio.*


•	1986		1988		1989	
	May	Sept	Oct	Nov	Apr	May
Gizzard Shad			58	140	1	11
Black Crappie		1	1	7		
White Crappie				1		
White Perch	88	1	10	3	17	57
Yellow Perch	25		2	6	1	5
White Sucker			3	2	9	15
White Bass			1			1
Largemouth Bass			1	1		1
Smallmouth Bass						1
Rock Bass	2	5	4	4	3	5
Brown Bullhead	1	1	2		1	1
Yellow Bullhead		3				
Channel Catfish		1				
Walleye		8	4			
Northern Pike				1		
Orangespotted sunfish				1		
Tadpole Madtom				1		
Trout-perch					3	
Emerald Shiner					1	
Northern Logperch Darter	2					
Shorthead Redhorse	4	3				
Freshwater Drum	15	1				7
Carp						2
Total	137	24	86	167	36	106

²³ Species

^{*} U. S. Fish and Wildlife 1986, 1988, 1989.

APPENDIX 1

Benthos and Sediment data from "The Analysis of Sediments from Cleveland Earbor" Technical Report #G0176-11, August 1986 prepared for the Buffalo District, Army Corps of Engineers by Aquatech Environmental Consultants, Robert Hoke, Principal Biologist.

4

BREAK WATER

L

Table III. Benthic Macroinvertebrate Abundance and Species Composition from the Cleveland Earbor Area, Cleveland, Ohio - July, 1986

Carron	Site No E-3	. Site No S-4	. Site No. S-S	Site So. EL-l	Site No.	Site No. SL-3	Site So. SI-4	Site So. SL-5	Site No SL-6
rthropoda					•				
insects									
Chironomidae									
Chironominee						•			
Chiroconini									
Chironomus tentans			1(14)		_				
Chironomus sp.	4(57)	13(186)	4(57)		•				
Tanytarsini							2(86)	2(86)	
Constempelling sp.	1(14)		1(14)						
Tanypodinae									
Procladius sp.	10(143)	8(114)	12(172)		1(43)	1(43)	1(43)	2(86)	2(86
Irustacea									
Maiacostracs									
Peracarida									
Ampaipoda									
Gamerica									
Garmarus fasciatus		1(14)	2(29)						
folluscs								•	
Pelec;pods									
Eeterodonta									
Sphaeriidae	29(401)	6(26)	15(215)	52:225)	86 (3698)	38(1634)	18(774)	64(2752)	24(1032
unnelida									
Clitellata									
Oligochaeta						•			
Maididae									
Pero sp.			1(14)		1(43)		2(96)		
Neis sp.							4(172)		
Paranais litorius			1(14)						
Pristing longiseta		1(14)							
longiseta									
Pristing osborni			1(14)						
Specaria josinae			2(29)						
Stylaria lacustria								1(40)	
Chaecogaster sp.			1(14)						
•			2,2.7						
Tuo:ficidae Aulodrilus limmobius		1(14)	5(71)	5(215)	10(450)	2(86)		1(40)	
Aulodrilus pigueti		-,-//	3- · • ·						1(30
Aulodrilus pleuriseis		6(86)	12(172)		3(129)	1(43)	3(129)		107400
Limodrilus cervix	1(14)	2,23,	2(23)	116(4989)	61(2522)	25(1075)	59(2537)	26(1118)	39(1677
Limmodrilus cervix-	21.04/		3,00,	1(45)		- *			
claparedianus intergrade									
Limodrilus boffmeisteri	7(100)	6(86)	7(100)	40(1720)	42(1806)	21(903)	35(1505)	49(2107)	39(1677
Limnodrilus motiseisteil	2(28)	1(14)	.,2007						
. Peloscolex sultisetosus	-(-0)	-(-4/		2(55)	3(129)	1(42)	5(215)	1(43)	1(43
longidentus				_,,,,,			•		
Peloscolex a. multisetosu	_			1(43)				1(43)	
	7(100)	8(114)	7(100)	• • • • • • • • • • • • • • • • • • • •					
Potamothrix moldeviensis	14(200)	13(186)	16(229)	2(\$6)		1(43)			
Potamothrix vejdovskyi	2(28)	19(100)	/ تسم الاط	2(40)	1(43)	-,,	4(172)	1(43)	4(172
immat. w/ bair setac immat. w/o bair setac	24(344)	38(545)	45(645)	110(4730)	58(2494)	45(1935)	64(2752)	89(2537)	37(1591
	100(1429)	102(1459)	135(1943)	329(14147)	256(11438)	135(5805)	197(8471)	207(8901)	157(5751
lotal No. of Taxa	9	11	17	8	8	8	9	9	7 0.61
LOEBT NO. OF TWEN	0.769	0.909	1.039	0.525	6.594	6.583	0.54	0.559	

Numbers enclosed in perenthesis indicate number of organisms per meter squared as extrapolated from the actual number of organisms collected, number of samples and area of samples.

RECEIVED

MAR 29 1993

U.S. Fish & Wildlife Service Reynoldsburg, Ohio ROUTICIG STAM
KROONEMEY
MULTERER
KUREY
HEGGE
LAMMERS
FAZIO
BAKER
ALL STAFF

FILE
FILE

George V. Voinovich • Governor Frances S. Buchholzer • Director

Division of Wildlife 1840 Belcher Drive Columbus, OH 43224 614/265-6300 FAX 614/262-1143

March 23, 1993

Mr. Kent E. Kroonemeyer U.S. Fish & Wildlife Service Reynoldsburg Field Office 6950-H Americana Parkway Reynoldsburg, Ohio 43068-4115

Dear Mr. Kroonemeyer:

The final Fish and Wildlife Coordination Act report for the proposed confined disposal facility (CDF) Site 10B at Cleveland Harbor has been reviewed and the Division of Wildlife (DOW) concurs with the report.

The DOW would also like to reemphasize two concerns raised in the final report. The first concern regards the upland disposal of dredged material versus construction of confined disposal sites. The utilization of the various upland disposal methods as referenced in the report would be highly favored over the loss and/or alteration of shore line and deep water habitat. Second, is the need to shift more attention to the source of the dredging disposal problem, i.e. upland erosion. The maintenance dredging of navigational channels and the disposal of the resulting dredge material is merely treating the symptoms of the real problem.

There is one additional concern the DOW has with the proposed CDF. Page 57, Item 4.17 of the Draft EIS states that efforts would be made, if possible, to live trap fish that are caught within the CDF once the dike is completed. The DOW believes, from past experience, that the cost to live trap far exceeds the value of the fish involved and would only remove a very small proportion of the fish actually caught within the The loss of said fish would have an extremely enclosure. marginal effect on the fishery of Lake Erie. Based on these factors the DOW recommends that a meeting be held to estimate the number of fish to be caught in the enclosure and derive a compensatory figure to be paid in lieu of the proposed trapping. The DOW believes that this would be a much more practical, economical, and efficient solution to the problem.

The DOW appreciates the opportunity to review and comment on the final report.

Sincerely,

Richard B. Pierce

Chief

United States Department of the Interior Fish and Wildlife Service

Reynoldsburg Field Office 6930-H Americans Parkway Reynoldsburg, Ohio 43068-4115

COPOR: 614/469-6923 PAE: 614/469-6919 March 31, 1993

lo Reply Refer to

District Engineer Buffalo District, Corps of Engineers Colonel John W. Morris

Buffalo, New York 14207 1776 Mingara Street

Attention: Len Brynisrekt

Dear Colonel Morries

This is our Pinal Fish and Wildlife Coordination Act Report on a proposed confined disposal facility (CDF) Site 10% at Cleveland, Cuyahoga County, Ohio. The report has been propared under authority of the Fish and Wildlife Coordination Act (48 stat. 401, as smended 16 U.S.C. 661 at seq.), for the Buffalo District Corps of Engineers per agreement No. NCB-1A-92-ONEG, dated

This report has been teviewed by the Ohio Division of Wildlife. Their concurrance latter dated March 23, 1993, is attached.

The Cleveland Rathor area, protected by breakwaters, is five miles long and 1,600 to 2,400 feat wide for a total area of approximately 1,300 acres. Improved and dredged channels are maintained in the lower 5.8 miles of the Cuyahoga River, the Old River Channel, and the Outer Harbor. The Lake feet deep up to the mouth of the Cuyahoga River. The Lower Chyahoga River Channel is 27 feet deep up to the Undahoga River. The Lower Chyahoga River upstreem to mile 5.8. In general, water quality has been improving over the pollured and unmarkable for open lake disposal.

The proposed CDF (Site 105) will be attached to a former disposal facility on the east and existing burke Airport fill on the south (see Flate 1). A subsequent of the will be constructed on the north side (4,500 feet) and west will be constructed with various sizes of speck ranging from that passing thirough a f300 sieve to 2.5 ton. A clay closure wall, approximately 5 feet high, will be constructed along the adjacent length of Burke Lakefront Airport. This wall will be removed when the CDF is full and the fill has

GENERAL - Thank you for your coordination, review, and comments. The numbered response paragraphs correspond to your numbered discussion and recommendation paragraphs.

composidated. The water depths in the area of the proposed CDF vary from about 18 fact to 25 fact.

The marigation channel which will be adjacent to the morth dike wall is maintained at a depth of 26 feet. Sediments in the proposed disposal area are probably fine sands, tlay, gravel and some organic material. This assumption is based on sediments we found at the proposed CDF site (Butha East) just to the east of existing filled disposal facility (Dika 12).

PISH AND WILDLIPE RESOURCES

Aquatic resources of Cleveland Bathor are many and varied. Species composition has changed over the years towards more pollution tolerant species due to the overall reduction in water quality. Bovever in recent years, this train may have stabilized or improved slightly from conditions in the mid 1970's.

Approximately 50 species of benthic microluvertabratas (primarily oligochaetes) have been reported in the Cleveland meathors some (Piloditinhas, 1978). We have not conducted any benthic studies at the proposed state. Boverer, we collected addisont samples at the proposed east basin CDF (Burke East) site at 1988 and the results of that attedy were besin CDF (Burke East) site at 1988 and the results of that attedy were provided to the Buffalo District Corps of Engineers in our Biological Report dated May 26, 1989. The location of the sampling sites is indicated on Plate 2 while the results of that benthic study are provided in Table 1. Nove details are contained in the Biological Report. We balkere that many of these organisms would also be found at Site 108. Also in 1986, the Buffalo District Corps of Engineers contracted a study of sediments and matrofuvertebrates at Engraveer Park and Burke lakefront Airport. The contractor was Aqua Tech Engraveental Consultate Incorporated and their report Min Analysis of August, 1986. Table Ill from that report and the location of the Burke Lakefront sampling sites is attached as Appendix 1.

Fish species in and adjacent to Cleveland Barbor commist of numerous forage and game species. The forage base is dominated by shad, spottail shiner and emerald shiner. Sport fish include white base, yellow perch, wallays, rock base and caffish. In recent years, the number of white perch in Cleveland, as well as Lake Eris, has greatly increased to a point where they may be one of the most abundant apecies.

In the early 1970's Dr. Andrew White conducted various surveys in the Cleveland area (White et.al.). Table 2 lists those species collected as fry or young-of-year in Cleveland Harbor during the years 1972-74. Table 3 provides a list of fish species collected in Cleveland Marbor and adjacent marines from 1972 to 1974.

In 1986 we set two variable mesh gill mets adjacent to Burke Lakefront Airport at the proposed "Site 10" CDF, which is the same location as the currently proposed Site 100. The results of that surveys are presented in Table 4. Also in 1988 and 1989, we conducted gill not surveys at the Burke East proposed CDP. The results of those surveys are also presented in Table 4. We present this data because we believe that fish populations at Site 108 would be comparable to those found at Site 10 in 1986 and at Burke East in 1988 and

2. PISH AND VILDLIFF RESOURCES . No further response necessary here.

1989. White et.al. collected a total of 47 species in Cleveland Barbor and adjacent marines. Our surveys at Burke East and Sies 10 found only about half as meny species. Part of the difference can be attributed to the fact that we only used gill note while White used a variety of sampling methods.

Vegetation in the project area of Site 10B is limited. There are a few small frees along the edge of Burke lakefront Airport, but most of the area contains grasses and herbs. There is also some algae attached to the riprap along burke lakefront Airport. Wildlife resources in the project area consists primarily of avian species. In April 1999 we observed the following birds: bonsparte's, barring and ring-billed gulls, common warganest, scamp, mallards, buffabend, woodbuck and common farm. On the edge of the filled CDF, we observed Canada great blue beron. In May 1999 we also observed black crowned night herons, barn swallows, and chimney swifts. We here made no surveys in the reptiles and probably phassants and rabbits on the Burke lakefront Airport property.

EMDANCELED SPECIES COMMENTS: The proposed project lies within the range of the Indiana bat and piping plover, Federally listed andangered species. Due to type of habitat in the project area, the project, as proposed, will have no largest on these species. This precludes the need for further action on this project as required by the 1973 Endangered Species Act, as smended. Should the project be modified or new information become available that indicates listed or proposed species may be affected, conmultation should be initiated.

DISCUSSION AND RECOMMENDATIONS

We have been discussing, commenting, and preparing reports on various proposed CDF's in the Cleveland area since the currently used CDF (Dike 14) was constructed. The Corps has borrowed some time for the used for a new CDF by reliang the dike walls of Dike 14. By raising these dike walls, Dike 14 will be capable of bolding an additional 3-5 pasts of dredged material. This is the second time we have looked at a proposed CDF at Butke Lakefront Airport. The first proposed was known as Site 10. We prepared an April 23, 1987 Draft the Clevaland Harbor sea.

Over the years, we have requested that the Corps consider using upland disponal sites for dredged material. We have also recommended use of dredged material as fill for industrial, transportation or commercial projects in the Cievaland area. For the last few years, some of the material dredged from the uppermost portion of the navigation channal has been clean enough to use as beath mourishment or introduced into the littorial drift.

In our opinion, the most accordical and environmentally sound solution to maintenance dredging and disposal of dredged material is to keep the saddents out of the Cupongs Hiver navigation channel. To this end, we are willing to assist the corps or any other Paderal, state or local agency in upland erosion control programs or projects.

3. Upland confined diaposal facilities and/or alternate use measures are discussed in EIS paragraphs 2.14 through 2.18.

The Corps has given consideration to upland areas as disposal sites. There are numerous problems with upland sites. First, the local sponsor is required to provide the disposal site and due to the heavy industrial and commercial use of the land areas adjacent to the Federal navigation channel there simply is no suitable available nearby site. Second, more distant sites would probably have to be outside the Cleveland harbor or city area because of the high degree of urbanisation. Even if such a site were available, it's unlikely that other communities would be willing to have the dredged polluted spoil "dumped" in their backyrad as they derive little, if any, direct benefit from the harbor. Third, the transport of large quantities of asturated spoil "dumped" in would pose considerable problems and, in itself, may have considerable impacts. Fourth, the potential use of an upland site generates an array of engineering, economic, environmental, and social concerns equal to or greater than potential use of a shoreline open-water CDF site.

The Corps has and will continue to beneficially use the clean, sandy fraction of the Cuyahoga River aediments as nourishment for Bratenahl Beach by placement in the nearshore littoral zone. An item of note is that the Buffalo District is one of several entities engaged in developing a Long Term Management Strategy (LTMS) Action Plan for Toledo Marbor, Ohio. This study way serve as a pilot study to further advance consideration and feasibility of alternative measures.

4. Pollution control and upstream erosion control measures are discussed in EIS paragraphs 2.06 and 2.07 through 2.12.

In our opinion, the implementation of an upland and floodplain erosion control program are the type of long range planning which should be implemented. By implementation of such a program, the need for costly, habitat destroying invasor CDF's could be eliminated or greatly reduced in the future. By invasor CDF's could be eliminated or greatly reduced in the future. By invasor CDF's could be eliminated or greatly reduced in the stricter pollution control standards, the sediments which would remain and need to be dredged could standards, the sediments which would remain and need to be dredged disposal would be appropriate. If action is not taken in the near future, the cost of controlling the erosion and confining the polluted sediments will only increase. Also, if the source of erosion is not controlled, at least partially, the immediate problem of removing sediments is perpetuated

The construction of the proposed CDF in Cleveland Rarbor would require mitigation for the loss of 68 acres of deep water aquatic habitat.

Replacement of the loss of deepwater habitat with inclind mitigation would not be practical. Therefore, we recommend out-of-Aind mitigation measures to enhance spawning habitat in Cleveland Rarbor be initiated. One spawning habitat to Cleveland Rarbor be initiated. One spawning habitat to maniet of designing into the proposed CDF dike a spawning abelf. This shelf constructed on the waterward side of the dike should be 44-feet wide and be located about 4-8 feet below moral water level. Freferably, portions of the shelf would be constructed at 4-6 and 6-8 feet to allow various species spawning after at various water levels. We envise the shelf below portucted of larger stone and then capped with a layer of gravel. The gravel asy have to be replenished, if ice consider would be to locate shallow water areas in or near Cleveland Barbor that could be to locate and the stigation spawning areas with the addition of gravel substrate. In both cases, the mitigation spawning areas would need to be maintained for the life of the project.

We appreciate this opportunity to provide this report and look forward to additional discussion and planning meetings regarding the proposed mitigation measures discussed above.

Sincerely,

Litt. Standard

cc: DOW, Wildlife Environmental Section, Columbus, OB ODRR, Office of Realty and Land Management, Columbus, OB Ohio EPA, Nater Quality Monitoring, Attu: G.Hesse, Columbus, OB US EPA, Office of Environmental Review, Chicago, IL

While we agree that the ideal situation would be to eliminate/limit the amount of sediment entering the channel, the Corpa has specific, limited authorities which do not include any sediment management activities. The Buffalb District did look at reducing the sediment load of the river under the authority of and as part of the Cuyahoga River Restoration Study conducted in the 1970's and 1980's. The recommendations in the report were for local interests to: implement Best Management Practices (BMP's) to reduce sheet and rill erosion in critically eroding areas, based on U.S. Soil Conservation Service experience with similar projects; and implement BMP's for non-point sediment sources. Many study recommendations have/been or are being implemented to some degree. The study estimated that the two BMP actions could reduce the volume of sediment entering the harbor by approximately 50 percent. Some progress in this regard may be exident over the last few decades wis erosion reduction programs, land use change, or probably both. Over the last few decades, the amount of material dredged from Cleveland Marbor has been reduced from about 500,000 cubic yards to 300,000 cubic yards on an average annual

The two suggestions made are valid ones that could be implemented by other local, State, and Pederal agencies, as the Corps has no authority to work on upland and non-point erosion control or pollution control. An item of note is that the Buffalo District is one of several entities engaged in developing a Long Term Hanagement Strategy (LTMS) Action Plan for Toledo Harbor, Ohio. In the development of this strategic plan watershed sediment management will be reviewed along with other alternatives. This Action Plan is scheduled for completion in October 1993 and its recommendations may have future applicability for the Cuyahoga River watershed.

5. Although creation of a "gravel shelf to improve spawning habitat" could improve fisheries habitat, the Buffalo District also recognizes that the submerged stone of the CDF dike would provide an estimated 9 acres of stable long-term fish habitat some of which would likely be used by fish species as spawning, nursery, and/or feeding habitat. This habitat would probably be of more value to the fishery than the very soft muck bottom (estimated to be about 7 feet deep in thickness) containing all tand clay material at the deep water CDF site. Additionally, the project would facilitate dredging removal and CDF contaminant of sediments dredged from the harbor that are considered to be "not suitable for unrestricted open-lake disposal," restricting movement of such material into the open water and sediments (environments) of the Harbor and Lake.

In light of the overall project mandate, costs, objectives/accomplishments, and assessment evaluation or trade-offs, the Corps of Engineers can not warrant "mitigation" (as it is defined by or as it pertains to the Corps planning criteria) for the project.

Lesser environmental design, consideration, or compensation measures may be considered and may be feasible if: a) they are incidental to the base project, b) they may be implemented at no additional or minor cost, and c) such measures further avoid, minimize, or compensate for lesser adverse impacts or improve environmental conditions.

Unfortunately, a number of serious problems have surfaced pertaining to consideration and implementation of the proposed measures. Considering the previous statements, the predominant problem is that raising the dike berm to the proposed elevation would require significant structural modification and associated costs which are not acceptable. The revised dike cross-section has a berm on both sides for stability reasons. The bottom material is very soft, unconsolidated silt and clay which will be displaced to some extent by dike construction. The underlying material also has a low bearing capacity and the berms are required to provide the factor of safety necessary to prevent any failure. These berms are at -18.0 to -20.0 fect on the lakeward side and

ahelf extending up to .6.0 feet on the lakeward side would require counterbalancing on the containment side which not only adds to the cross-counterbalancing on the containment side which not only adds to the cross-sectional area of the dike and its cost, but also reduces the available space in the CDF for dredged material. Requiring us to make the containment area larger and again more costly. We conservatively estimate the cost of the additional stone to construct the shelf and the counteresight to be hundreds of thousands of dollars. This does not include the placement of gravel sized atone on the submerged berm due to acouting by wave action which would be costly and would require the local aponsor to assume that responsibility once the CDF size is filled. It is unlikely that the aponsor would agree to such a stipulation. Also, recent comments received by the Corps from the TM (letter dated Harch 15, 1993) and the City of Clevelland (letter dated April 15, 1993), indicated strong opposition to the spawning shelf because of their concern that, if the CDF when filled was conversed to an airport runway area, the flaheries improvement messure may contribute toward further attracting birds to the area that feed on juvenile fish, thereby possing an increased potential safety hazard to pilots and aircraft utilizing the runway.

Placement of gravel in shallow unprotected coastal water areas in the general vicinity of the airport or harbor would probably not be acceptable for similar reasons. Additionally, Gorp's mitigation and compensation policy (rule of thumb) directs compensation (as necessary) in kind, in time, and in place. Heasures would need to be in proximity to the site. In view of the factors addressed in the above paragraphs, it is the Buffalo District's conclusion that the proposed measures are not feasible for the proposed project.

CLEVELAND HARBOR, CUYAHOGA COUNTY, OHIO

CONFINED DISPOSAL FACILITY PROJECT (SITE 10B - 15 YEAR)

FINAL
ENVIRONMENTAL IMPACT
STATEMENT AND
APPENDICES

March 1994